论文阅读-Synthesizing Robust Adversarial Examples(EOT)

文章介绍了EOT算法,一种能生成对多种变换鲁棒的对抗样本的框架,尤其在3D环境中。通过3D打印制造了首个物理世界的对抗对象,证明了对抗性在现实世界中的有效性。这种方法通过预期变换优化,模拟和建模不同变换,如旋转、平移和噪声,以维持对抗性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该文解决的问题:由于视角偏移、相机噪声和其他自然变换的组合,对抗攻击并不能以100%的攻击成功率欺骗物理世界中的神经网络分类器。该文证明了鲁棒的3D对抗对象的存在,并且提出了第一个算法(EOT),用于合成在选定的变换分布上具有对抗样本。作者生成了对噪声、失真和仿射变换具有鲁棒性的二维对抗图像。同时,当算法应用于复杂的 3D 对象,使用 3D 打印制造第一个物理对抗对象,这证明了物理世界中存在 3D 对抗对象。

该文的几个贡献:

  • 开发了EOT,这是第一个产生鲁棒对抗样本的算法:对整个变换分布同时具有对抗性的单对抗性样本。
  • 成功构建3D对抗样本。
  • 制造了第一个3D物理世界对抗性对象,并表明它们欺骗了物理世界中的分类器,证明了所提出方法的端到端有效性,并表明了鲁棒物理世界对抗性对象的存在。

方法

首先,作者提出了Expectation Over Transformation(EOT)算法,这是一个通用框架,允许构建对抗样本,这些对抗样本在选定的转换分布 T 上保持对抗性。描述了一种端到端的方法,利用EOT的专门应用,结合3D渲染过程的差异性来生成对抗性物体。

通常对抗样本的求解可以表述为:

 这个构成方法生成对抗样本没问题,但是所生成的对抗样本在现实世界中(角度和视点变化)难以保持对抗性。为了解决这个问题,EOT采取的方法是在优化过程中对这种扰动进行建模。用的是一个符合给定分布T的函数t()。x'是对抗样本,t(x')就是分类器所接收到的输入。所以,对于物理空间来说,扰动应定义如下:

对抗样本生成方法定义如下:

 

 实际中,分布T可以对感知失真进行建模,如随机旋转、平移或添加噪声。

通过随机梯度下降来最大化目标。通过在每个梯度下降步骤独立采样变换近似期望值的梯度,并通过变换求导。

在2D的情况下,考虑变换的分布,包括通过加性因子重新缩放、旋转、变亮或变暗、添加高斯噪声和图像的平移。即,t(x)=Ax+b,这些随机变换很容易求导,可以直接应用EOT。且对于2D图像来说,EOT可以应对图像增强的场景。

在3D情况下,考虑与某些选定的 3D 对象(形状)相对应的纹理(颜色模式) x,并且选择变换函数 t(x) 的分布,该函数采用纹理并渲染 3D 对象的姿势。变换函数将纹理映射到对象的渲染图上,模拟对象的渲染、光照、旋转、平移和透视投影等功能。在真实的姿势分布上找到对抗纹理允许将对抗样本转移到物理世界。简单来说,就是提前将物理世界可能出现的情况模拟出来。即t(x)=Mx+b.

标准的3D渲染器,作为渲染管道的一部分,计算对应于屏幕坐标的纹理空间坐标;我们修改一个现有的渲染器来返回这些信息。然后,我们不通过渲染器进行微分,而是通过计算,然后通过t(x)=Mx+b进行微分。对于每个姿态,必须使用渲染器重新计算M和b,因为EOT在每个梯度下降步骤中都会采样新的姿态。

注:设f : A -----> B为一个映射,A叫做这个映射的定义域(domain),B叫做这个映射的陪域(codomain)(或称上域、到达域)

优化目标函数

作者并没有直接解决上面给出的约束优化问题,而是使带约束的拉格朗日松弛形式,其距离是在LAB颜色空间计算:

 接下来梯度下降就可以解决了。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值