机器学习任务中对数值类型做特征归一化的必要性,《百面机器学习》学习笔记

文章讲述了在机器学习任务中,特别是使用梯度下降算法时,对数值型特征进行归一化的必要性。归一化可以影响梯度下降的速度,避免大范围数值导致过多迭代。线性模型、逻辑回归、支持向量机和神经网络等通常需要数据归一化,但决策树模型因其信息增益比计算不受影响,故不需要归一化。
摘要由CSDN通过智能技术生成

《百面机器学习》学习笔记:机器学习任务中对数值类型做特征归一化的必要性

需要使用梯度下降进行优化的方法中,一般都需要对数值类型特征进行特征归一化,因为这会影响到梯度下降的速度。为了更好地说明做数据归一化的必要性,首先给出标准梯度下降的推导公式。

例如,假设 x 1 ∈ [ 0 , 10 ] x_1\in[0,10] x1[0,10] x 2 ∈ [ 0 , 3 ] x_2\in[0,3] x2[0,3],使用标准的梯度下降公式,假设如下所示为简单的线性模型:
h ( θ ) = θ 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ i x i h(\theta) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_ix_i h(θ)=θ0+θ1x1+θ2x2+...+θixi

假设其损失函数为:
J ( θ ) = 1 2 [ h t ( x ) − y ] 2 J(\theta)=\frac{1}{2}[h_t(x)-y]^2 J(θ)=21[ht(x)y]2
那么得到的梯度下降基本形式如下:
θ n + 1 = θ n − α J ′ ( θ ) \theta_{n+1}=\theta_{n}-\alpha J'(\theta) θn+1=θnαJ(θ)
其中, α \alpha α为学习率。然后,对损失函数最小化,需要对 J ( θ ) J(\theta) J(θ)求导:
J ′ ( θ ) = ∂ J ( θ ) θ = [ h θ ( x ) − y ] × h θ ′ J'(\theta)=\frac{\partial J(\theta)}{\theta}=[h_{\theta}(x)-y] \times h'_{\theta} J(θ)=θJ(θ)=[hθ(x)y]×hθ
其中, h θ ′ = x h'_{\theta}=x hθ=x,那么可以得到:
J ′ ( θ ) = [ h θ ( x ) − y ] × x J'(\theta)=[h_{\theta}(x)-y] \times x J(θ)=[hθ(x)y]×x
即:
θ n + 1 = θ n − α [ h θ ( x ( i ) ) − y ( i ) ] × x ( i ) \theta_{n+1}=\theta_{n}-\alpha[h_{\theta}(x^{(i)})-y^{(i)}]\times x^{(i)} θn+1=θnα[hθ(x(i))y(i)]×x(i)

从上述推导过程可以看出,对目标函数中参数的更新速度,主要取决于学习率大小和 x x x中具有较大取值范围的变量 x i x^i xi,如果变量 x i x^i xi不进行归一化,那么将会导致到达最佳目标值的更多迭代次数。因此,对数值类型的特征值进行归一化是必要的,有利于加快找到目标函数最优解的速度。

正如《百面机器学习》这本书中提到的,也不是什么任务都可以使用数据归一化,对于线性回归/逻辑回归/支持向量机/神经网络等模型来说,归一化是必要的。但对于决策树模型则并不适用,因为决策树在划分节点时,需要根据数据集 D D D关于特征 x x x的信息增益比,而信息增益比对特征是否归一化是没有关系的。因为归一化并不会改变样本在特征 x x x上的信息增益。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wyypersist

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值