一、简介
在机器学习中,经常需要通过散点图查看原始数据的分布情况,从而对特征和算法的选择进行初步判断。
散点图可以形象展示直角坐标系中两个变量之间的关系。在散点图中 ,每个数据点的位置实际上就是两个变量的值。变量间的任何关系都可以拿散点图来表示。
matplotlib绘图功能模仿MATLAB,非常方便和强大。下面,本文将详细介绍如何使用matplotlib画出好看实用的散点图。
如果你对matplotlib完全不熟悉,可以先花10分钟去我的另一篇博客学习一下基本操作:
10分钟带你从零上手matplotlib数据可视化
需要进一步深入了解的朋友可以查看 matplotlib.pyplot.scatter 官方文档
二、2D散点图参数及实例
1. 常用参数详解
import matplotlib.pyplot as plt
plt.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None,
vmin=None, vmax=None, alpha=None, linewidths=None,
verts=None, edgecolors=None, *, data=