机器学习必备,用matplotlib画2D和3D散点图参数介绍及实例分析

一、简介

在机器学习中,经常需要通过散点图查看原始数据的分布情况,从而对特征和算法的选择进行初步判断。

散点图可以形象展示直角坐标系中两个变量之间的关系。在散点图中 ,每个数据点的位置实际上就是两个变量的值。变量间的任何关系都可以拿散点图来表示。

matplotlib绘图功能模仿MATLAB,非常方便和强大。下面,本文将详细介绍如何使用matplotlib画出好看实用的散点图。

如果你对matplotlib完全不熟悉,可以先花10分钟去我的另一篇博客学习一下基本操作:
10分钟带你从零上手matplotlib数据可视化

需要进一步深入了解的朋友可以查看 matplotlib.pyplot.scatter 官方文档

二、2D散点图参数及实例

1. 常用参数详解
import matplotlib.pyplot as plt
plt.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, 
			vmin=None, vmax=None, alpha=None, linewidths=None, 
			verts=None, edgecolors=None, *, data=
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值