男声女声分类之SVM

男声女声分类之svm

svc

1、支撑向量机SVM是一种非常重要和广泛的机器学习算法,它的算法出发点是尽可能找到最优的决策边界,使得模型的泛化能力尽可能地好,因此SVM对未来数据的预测也是更加准确的。

2、SVM既可以解决分类问题,又可以解决回归问题,原理整体相似,不过也稍有不同。

本次实验属于二分类问题,我们选择svm.SVC模型进行分类预测。

数据

#导入数据
train = pd.read_csv("voice_train.csv")
test = pd.read_csv("voice_test.csv")
train.head(5)
#初步观察得知,数据提供较多特征值,且都是数字化,需要进行male、female二分类

#性别数字化
train['label'] = train['label'].map( {'male': 1, 'female': 0} ).astype(int)
#1为male、0为female
#分出特征值和标签
X = train.drop("label", axis=1)
y = train['label']
#划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(X, y, random_state=1, train_size=0.8)
#特征值归一化处理
scaler = StandardScaler()
scaler.fit(x_train)
x_train = scaler.transform(x_train)
scaler.fit(x_test)
x_test = scaler.transform(x_test)
scaler.fit(test)
test = scaler.transform(test)

模型构建预测

#构建模型,调整参数
svc = SVC(kernel='linear', C = 1)
svc.fit(x_train, y_train)
svc_pre = svc.predict(x_test)


最终SVC在从train分出的训练集和测试集分别达到了0.976和0.972的分数,本文只展示了SVC的使用效果,读者可使用决策树、逻辑回归等多种模型进行实际测试对比效果

源代码:github

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

G-Jarvey

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值