神经网络系列---池化

本文探讨了卷积神经网络中的最大池化与平均池化,包含其工作原理、示例计算和相关代码,适用于深度学习理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



池化

最大池化

最大池化(Max Pooling)是卷积神经网络中常用的一种池化技术。其操作是:在输入特征图的一个局部窗口内选取最大的值作为该窗口的输出。

数学表达式如下:

考虑一个输入特征图 A A A,并定义一个大小为 f × f f \times f f×f 的池化窗口和步长 s s s。对于输出特征图 M M M 中的元素 M ( i , j ) M(i,j) M(i,j),其值由以下公式确定:

M ( i , j ) = max ⁡ u = 0 f − 1 max ⁡ v = 0 f − 1 A ( i × s + u , j × s + v ) M(i,j) = \max_{u=0}^{f-1} \max_{v=0}^{f-1} A(i \times s + u, j \times s + v) M(i,j)=maxu=0f1maxv=0f1A(i×s+u,j×s+v)

其中:

  • M ( i , j ) M(i,j) M(i,j) 是输出特征图的第 ( i , j ) (i,j) (i,j) 个元素。
  • max ⁡ \max max 表示最大值操作。
  • u u u v v v 都是在 [ 0 , f − 1 ] [0, f-1] [0,f1] 范围内变化的索引,它们用于遍历池化窗口内的每一个元素。
  • s s s 是步长,定义了池化窗口在输入特征图上移动的距离。
  • A ( i × s + u , j × s + v ) A(i \times s + u, j \times s + v) A(i×s+u,j×s+v) 是输入特征图 A A A 中与输出特征图 M ( i , j ) M(i,j) M(i,j) 对应的局部窗口的元素。

这个公式简单地描述了最大池化的操作:对于每个输出元素 M ( i , j ) M(i,j) M(i,j),都在输入特征图 A A A 的相应局部窗口中找到最大的值。

//最大池化
Eigen::MatrixXf Pooling::maxPoolingForward(const Eigen::MatrixXf& input,int m_poolSize,int m_stride)
{
    int outputHeight = (input.rows() - m_poolSize) / m_stride + 1;
    int outputWidth = (input.cols() - m_poolSize) / m_stride + 1;

    Eigen::MatrixXf output(outputHeight, outputWidth);

    for (int i = 0; i < outputHeight; ++i)
    {
        for (int j = 0; j < outputWidth; ++j)
        {
            output(i, j) = input.block(i * m_stride, j * m_stride, m_poolSize, m_poolSize).maxCoeff();
        }
    }

    return output;
}
//最大池化 反向
Eigen::MatrixXf Pooling::maxPoolingBackward(const Eigen::MatrixXf& input, const Eigen::MatrixXf& gradient,int m_poolSize,int m_stride)
{
    Eigen::MatrixXf output = Eigen::MatrixXf::Zero(input.rows(), input.cols());

    int outputHeight = gradient.rows();
    int outputWidth = gradient.cols();

    for (int i = 0; i < outputHeight; ++i)
    {
        for (int j = 0; j < outputWidth; ++j)
        {
            int row,col;
            input.block(i * m_stride, j * m_stride, m_poolSize, m_poolSize).maxCoeff(&row,&col);
            output(i * m_stride + row, j * m_stride + col) += gradient(i, j);

        }
    }

    return output;
}

平均池化

平均池化(Average Pooling)是卷积神经网络中另一种常用的池化技术。其操作是在输入特征图的一个局部窗口内计算所有值的平均值,然后将此平均值作为该窗口的输出。

数学表达式如下:

考虑一个输入特征图 A A A,并定义一个大小为 f × f f \times f f×f 的池化窗口和步长 s s s。对于输出特征图 M M M 中的元素 M ( i , j ) M(i,j) M(i,j),其值由以下公式确定:

M ( i , j ) = 1 f × f ∑ u = 0 f − 1 ∑ v = 0 f − 1 A ( i × s + u , j × s + v ) M(i,j) = \frac{1}{f \times f} \sum_{u=0}^{f-1} \sum_{v=0}^{f-1} A(i \times s + u, j \times s + v) M(i,j)=f×f1u=0f1v=0f1A(i×s+u,j×s+v)

其中:

  • M ( i , j ) M(i,j) M(i,j) 是输出特征图的第 ( i , j ) (i,j) (i,j) 个元素。
  • ∑ \sum 表示求和操作。
  • u u u v v v 都是在 [ 0 , f − 1 ] [0, f-1] [0,f1] 范围内变化的索引,它们用于遍历池化窗口内的每一个元素。
  • s s s 是步长,定义了池化窗口在输入特征图上移动的距离。
  • A ( i × s + u , j × s + v ) A(i \times s + u, j \times s + v) A(i×s+u,j×s+v) 是输入特征图 A A A 中与输出特征图 M ( i , j ) M(i,j) M(i,j) 对应的局部窗口的元素。
  • f × f f \times f f×f 是池化窗口的大小。

这个公式描述了平均池化的操作:对于每个输出元素 M ( i , j ) M(i,j) M(i,j),都在输入特征图 A A A 的相应局部窗口中计算所有值的平均值。

//平均池化
Eigen::MatrixXf Pooling::averagePoolingForward(const Eigen::MatrixXf& input,int m_poolSize,int m_stride)
{
    int outputHeight = (input.rows() - m_poolSize) / m_stride + 1;
    int outputWidth = (input.cols() - m_poolSize) / m_stride + 1;

    Eigen::MatrixXf output(outputHeight, outputWidth);

    for (int i = 0; i < outputHeight; ++i)
    {
        for (int j = 0; j < outputWidth; ++j)
        {
            output(i, j) = input.block(i * m_stride, j * m_stride, m_poolSize, m_poolSize).mean();
        }
    }

    return output;
}

// 反向传播对于平均池化比较简单,因为只需要分摊输入梯度到相应的位置。
Eigen::MatrixXf Pooling::averagePoolingBackward(const Eigen::MatrixXf& input,const Eigen::MatrixXf& gradient,int m_poolSize,int m_stride)
{
    Eigen::MatrixXf output = Eigen::MatrixXf::Zero(input.rows(), input.cols());

    int inputHeight = gradient.rows();
    int inputWidth = gradient.cols();

    for (int i = 0; i < inputHeight; ++i)
    {
        for (int j = 0; j < inputWidth; ++j)
        {
            output.block(i * m_stride, j * m_stride, m_poolSize, m_poolSize).array() += gradient(i, j) / (m_poolSize * m_poolSize);
        }
    }

    return output;
}
### 最大池化的概念 最大池化是一种下采样技术,在卷积神经网络(CNN)中用于降低特征图的空间维度。通过选取局部区域内的最大值作为该区域的代表,可以有效减少数据量并保留最显著的信息[^1]。 ### PyTorch 中的最大池化实现 在 `torch.nn` 模块提供了 `MaxPool2d` 类来创建二维最大池化层。其主要参数如下: - **kernel_size**: 定义窗口大小,默认为 `(2, 2)`。 - **stride**: 控制滑动步幅,默认等于 kernel_size。 - **padding**: 边缘填充宽度,默认不填充值即 padding=0。 - **return_indices**: 是否返回索引位置,默认 False 不返回。 ```python import torch from torch import nn # 创建一个简单的 Max Pooling 层实例 maxpool_layer = nn.MaxPool2d(kernel_size=(2, 2), stride=None) input_tensor = torch.randn(1, 1, 4, 4) # 输入张量形状 (batch_size, channels, height, width) output_tensor = maxpool_layer(input_tensor) print(f'Input tensor:\n{input_tensor}') print(f'\nOutput after applying MaxPooling:\n{output_tensor}') ``` 这段代码展示了如何定义以及应用最大池化操作到输入张量上,并打印原始输入与经过最大池化后的输出结果。 对于 CIFAR10 数据集图像而言,当采用默认设置时,如果原图为 \(H \times W\) 大小,则经由最大池化后的新尺寸会变为大约 \(\frac{H}{2} \times \frac{W}{2}\),这有助于加速后续运算过程的同时保持重要的视觉特性不变。 ### 实际应用场景 最大池化广泛应用于计算机视觉领域,特别是在构建 CNN 架构时不可或缺的一部分。它不仅能够压缩空间分辨率,还具备一定的平移不变性和鲁棒性增强效果,使得模型更加专注于捕捉高层次抽象特征而非低层次细节变化[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值