一、神经元模型
1、什么是神经网络;
2、什么式“M-P神经元模型”,绘制出大概模型;
3、”激活函数“的作用;有哪些激活函数;
4、为什么经常把阶跃函数作为激活函数,常用的激活函数有哪些,各有什么优缺点,大概图形是怎样的;
二、感知机与多层神经网络
1、什么是感知机;
2、说说如何使用感知机实现逻辑与、或、非运算;
3、感知机只有一层输出神经元进行激活函数处理,即只拥有一层功能神经元,学习能力非常有限;
4、什么是”多层前馈神经网络“;
三、误差逆传播算法
1、说说误差逆传播算法(BP算法)的原理;
2、手动推到误逆传播算法;
3、掌握标准BP算法和累积BP算法的区别;
4、众所周知;神经网络其强大的表示能力,常使其遭遇过拟合,如何解决过拟合问题;(”早停“和”正则化“)
四、全局最小和局部极小
1、如何试图”跳出“局部最小,从而进一步接近全局最小;
(1)以多组不同的参数初始化多个神经网络;按标准方法训练后,去其中误差最小的解作为最终参数;
(2)使用”模拟退火“技术;维基百科——神经网络
(3)使用随机梯度下降;维基百科——随机梯度下降
(4)遗传算法;维基百科——遗传算法
五、其他常见的神经网络
(1)RBF网络;
(2)ART网络;
(3)SOM网络;
(4)忌廉相关网络;
(5)Boltzmann机;
六、深度学习
(1)典型的深度学习模型有哪些;
(2)无监督逐层训练是多隐层网络训练的有效有段,其基本思想是什么;(预训练+微调)
(3)另一种节省训练开销的策略是”权共享“,以手写数字识别为例,说说其在卷积神经网络中的应用;