关于向量的叉乘右手定则判方向

本文详细解析了向量叉乘的定义与特性,包括右手定则确定方向、向量积的性质及其与数量积的区别。并通过实例说明了叉乘满足的基本性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文转载自:https://zhidao.baidu.com/question/528267710.html

a×b的方向:四指由a开始,指向b,拇指的指向就是a×b的方向,垂直于a和b所在的平面;

b×a的方向:四指由b开始,指向a,拇指的指向就是b×a的方向,垂直于b和a所在的平面;

a×b的方向与b×a的方向是相反的,且有:a×b=-b×a。

注:向量积≠向量的积(向量的积一般指点乘)

一定要清晰地区分开向量积(矢积)与数量积(标积)

在这里插入图片描述
扩展资料:

叉乘满足的基本的性质如下:

向量a×向量b=向量0 , 因为夹角是0, 所以平行四边形面积也是0, 即叉积长度为0。

向量a×向量b =−(向量b×向量a), 等式两边的叉积等大反向, 模长因为平行四边形不变而相同, 方向因为右手法则旋转方向相反而相反。

(λ向量a)×向量b=λ(向量a×向量b ), 这点比较好想, 因为:

①正数λ数量乘不会影响向量a的方向, 所以左右的叉积方向一样; 负数λ使得向量a反向了, 但也使得左右叉积方向相反。

②对向量a进行缩放, 平行四边形面积也同等缩放。

### 回答1: 向量向量的结果是一个向量,这个向量垂直于原来两个向量所在的平面,并且方向右手定则决定。如果再用这个向量原来的其中一个向量,得到的向量就是三个向量构成的体积。这个体积的大小等于原来两个向量所在平面上的平行四边形的面积,方向右手定则决定。因此,向量向量向量的几何意义是计算三个向量所构成的体积。 ### 回答2: 向量是指给定两个向量,通过运算得到一个新的向量。当一个向量与另一个向量进行后再与另一个向量再次进行,这种操作的几何意义是构造一个垂直于原始平面的新向量。 具体来说,假设有向量A和向量B,根据向量定义,得到向量C=A×B。向量C垂直于原始平面,其方向可由右手法则确定。意味着C与向量A和向量B共面,并且C的大小等于A和B所在平面的面积以sinθ,其中θ为A和B之间的夹角。 当我们将C与向量B进行后,得到向量D=C×B。向量D不再垂直于原始平面,而是沿着A和B共线的方向。这是因为向量B的方向向量C共面,所以向量D与向量C共线,并且其方向由右手法则确定。向量D的大小等于C和B所在平面的面积以sinφ,其中φ为C和B之间的夹角。 因此,当一个向量与另一个向量进行后再与另一个向量再次进行时,结果向量沿着原始平面的垂直方向和共线方向分别表达了原始平面的法向量和垂直向量。这种操作可以用于计算平面的法线方向、计算两个向量构成的平面的面积,或者用于构造与多个向量共面且垂直于它们的向量。 ### 回答3: 向量是一种在三维空间中定义的运算,它用来产生一个新的向量,该向量与原来的两个向量垂直,并且符合右手法则。向量有一个重要的几何意义,即两个向量结果可以得到一个垂直于这两个向量所构成的平面的向量。 当我们对一个向量a向量b再向量c时,可以表示为(a×b)×c。这个结果代表了一个新的向量,它垂直于向量a×b和向量c所构成的平面。具体来说,向量a×b所表示的是一个平面,而向量c在该平面上的垂直向量,所以(a×b)×c表示了平面上的一个垂直于该平面的向量。 几何意义上来讲,向量a×b表示了由向量a和向量b所构成的平面的法向量,而(a×b)×c则表示了由向量a、向量b和向量c所构成的平面的法向量。具体来说,这个法向量垂直于这个平面并指向其中一个方向。这个结果在三维几何中有广泛的应用,例如计算平面的法向量、计算线段之间的夹角等。 总之,向量向量向量的几何意义是得到一个垂直于两个向量构成的平面的向量,它在几何上表示了这个平面的法向量,可以用来解决与平面相关的几何问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值