排序

103. 电影

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这道题用到了离散化的思想
一开始程序各种超时,后来把map改成了unordered_map就好了
unordered_map内部是实现了一个哈希表,查找效率为O(1),效率比map要快

unordered_map和map的区别:https://www.cnblogs.com/strawqqhat/p/10602515.html

一开始使用unordered_map头文件报错了,解决方法:https://www.cnblogs.com/llllrj/p/9510239.html

#include <bits/stdc++.h>
using namespace std;

#if(__cplusplus == 201103L)
#include <unordered_map>
#include <unordered_set>
#else
#include <tr1/unordered_map>
#include <tr1/unordered_set>
namespace std
{
    using std::tr1::unordered_map;
    using std::tr1::unordered_set;
}
#endif

const int N = 2e5 + 5;

unordered_map<int,int> ma;

typedef struct{
	int id, lan, sub;
}movie;

movie arr[N];

bool cmp(movie a, movie b){
	if (a.lan != b.lan)
		return a.lan > b.lan;
	else
		return a.sub > b. sub;
}

int main(void)
{
	int n, m;
	int a, b, c;
	scanf("%d", &n);
	for (int i = 1; i <= n; i++){
		scanf("%d", &a);
		ma[a]++;
	}
	scanf("%d", &m);
	for (int i = 1; i <= m; i++){
		scanf("%d", &b);
		arr[i].lan = ma[b];
		arr[i].id = i;
	}
	for (int i = 1; i <= m; i++){
		scanf("%d", &c);
		arr[i].sub = ma[c];
	}
	sort(arr + 1, arr + n + 1, cmp);
	printf("%d\n", arr[1].id);
	return 0;
}

104. 货仓选址

在这里插入图片描述

中位数的性质

#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 1e5 + 5;

int arr[N];

int main(void)
{
	int n, ans = 0;
	scanf("%d", &n);
	for (int i = 1; i <= n; i++)
		scanf("%d", &arr[i]);
	sort(arr + 1, arr + n + 1);
	for (int i = 1; i <= n / 2; i++){
		ans += arr[n - i + 1] - arr[i];
	}
	printf("%d\n", ans);
	return 0;
}

106. 动态中位数

在这里插入图片描述
在这里插入图片描述

大根堆用来存储从小到大排列中前1——m/2,小根堆用来存储后m/2+1——m
这样中位数即为小根堆的堆顶

#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;

priority_queue<int> max_que;
priority_queue<int, vector<int>, greater<int> > min_que;

int main(void)
{
	int p, id, m, t, cnt;
	cin >> p;
	while (p--){
		cnt = 0;
		cin >> id >> m;
		cout << id << ' ' << (m + 1) / 2 << endl;
		for (int i = 1; i <= m; i++){
			cin >> t;
			//判定应该放入大根堆还是小根堆 
			if (i == 1 || t >= min_que.top())
				min_que.push(t);
			else if (t < min_que.top())
				max_que.push(t);
			//判断两堆之间的数目是否合理 
			int d = max_que.size() - min_que.size();
			if (d > 0){
				t = max_que.top();
				max_que.pop();
				min_que.push(t);
			}
			else if (d < -1){
				t = min_que.top();
				min_que.pop();
				max_que.push(t);
			}
			//输出中位数 
			if (i % 2 == 1){
				cout << min_que.top() << ' ';
				cnt++;
				if (cnt % 10 == 0)
					cout << endl;
			}	
		}
		cout << endl;
		//清空 
		while (max_que.size() > 0){
			max_que.pop();
		}
		while (min_que.size() > 0){
			min_que.pop();
		}
	}
	return 0;
}

107. 超快速排序

在这里插入图片描述
在这里插入图片描述

要求冒泡排序中交换的次数,如果模拟冒泡排序的话,O(n2)O(n^2)的复杂度一定会超时。
冒泡排序的交换个数就是逆序对个数,求逆序对最快的方法就是归并排序,复杂度为O(nlogn)O(nlogn)

#include <iostream>
using namespace std;
const int N = 5e5 + 5;
typedef long long ll;

ll a[N], b[N], cnt;

void merge(int l, int mid, int r)
{
	if (r - l < 1)
		return;
	merge(l, (l + mid) / 2, mid);
	merge(mid + 1, (mid + 1 + r) / 2, r);
	int i = l, j = mid + 1;
	for (int k = l; k <= r; k++)
		if (j > r || i <= mid && a[i] < a[j])
			b[k] = a[i++];
		else
			b[k] = a[j++], cnt += mid - i + 1;
	for (int k = l; k <= r; k++)
		a[k] = b[k];
}

int main(void)
{
	int n;
	while (cin >> n && n != 0){
		cnt = 0;
		for (int i = 1; i <= n; i++)
			cin >> a[i];
		merge(1, (1 + n) / 2, n);
		cout << cnt << endl;
	}
	return 0;
}
发布了168 篇原创文章 · 获赞 20 · 访问量 2万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览