洛谷P3366 最小生成树模板

题目链接:https://www.luogu.com.cn/problem/P3366
最小生成树算法详解:https://blog.csdn.net/weixin_43772166/article/details/107377886

题目描述

如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz

输入输出格式

输入格式:

第一行包含两个整数N、M,表示该图共有N个结点和M条无向边。(N<=5000,M<=200000)
接下来M行每行包含三个整数Xi、Yi、Zi,表示有一条长度为Zi的无向边连接结点Xi、Yi

输出格式:

输出包含一个数,即最小生成树的各边的长度之和;如果该图不连通则输出orz

输入输出样例

输入样例#1:

4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3

输出样例#1: 复制

7

说明

时空限制:1000ms,128M
数据规模:
对于20%的数据:N<=5,M<=20
对于40%的数据:N<=50,M<=2500
对于70%的数据:N<=500,M<=10000
对于100%的数据:N<=5000,M<=200000
样例解释:
在这里插入图片描述
所以最小生成树的总边权为2+2+3=7

prim算法

因为prim算法是取点,最后判断取的点数是否为n即可

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cstdio>
using namespace std;
const int N = 5e3;
const int INF = 0x3f3f3f3f;

bool vis[N + 5];
int dis[N + 5]; //存储生成树到其他非树节点的距离
int ma[N + 5][N + 5];
int n, m, ans;

void init()
{
    ans = 0;
    memset(vis, 0, sizeof vis);
    for (int i = 0; i <= n; i++) 
        for (int j = 0; j <= n; j++)
            ma[i][j] = ma[j][i] = (i == j ? 0 : INF);
}

void prim()
{
    for (int i = 0; i <= n; i++) 
		dis[i] = ma[1][i];
    dis[1] = 0;
    vis[1] = true;
    // 找到剩余的 n-1 个点 
    for (int i = 1; i < n; i++) {
        int k = 0;
        // 找到没有使用过的且离当前点边权最小的点
        for (int j = 1; j <= n; j++)
            if (!vis[j] && dis[j] < dis[k]) 
				k = j;
        vis[k] = true;
        ans += dis[k];
        // 更新生成树到每一个非树顶点的距离
        for (int j = 1; j <= n; j++) {
            if (dis[j] > ma[k][j]) 
				dis[j] = ma[k][j];
        }
    }
}

int main(void)
{
    int x, y, z;
    scanf("%d %d", &n, &m);
    init();
    while (m--) {
        scanf("%d %d %d", &x, &y, &z);
        if (z < ma[x][y])
        	ma[x][y] = ma[y][x] = z;
    }
    prim();
    int cnt = 0;
    for (int i = 1; i <= n; i++) {
    	if (vis[i] == 1) {
    		cnt++;
    	}
    }
    if (cnt == n)
    	printf("%d\n", ans);
    else
    	printf("orz");
    
    return 0;
}

kruskal算法

因为kruskal算法是取边的,最后要判断一下取的边数是否等于n-1即可,如果等于n-1,表示是连通的。

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cstdio>
using namespace std;
const int N = 2e5;

typedef pair<int, int> P;
int bcj[5005];
int n, m, cnt, ans;

struct node {
    int u, v, w;
    inline bool operator < (const node &x) const {
        return w < x.w;
    }
} edge[200005];

int Find(int x)
{
    if (bcj[x] < 0) return x;
    return bcj[x] = Find(bcj[x]);
}

void Union(int x, int y)
{
    x = Find(x), y = Find(y);
    if (x == y) return ;
    bcj[x] += bcj[y];
    bcj[y] = x;
}

void kruskal()
{
    cnt = ans = 0;
    sort(edge, edge + m);
    for (int i = 0; i < m; ++i) {
        int u = Find(edge[i].u), v = Find(edge[i].v);
        if (u == v) continue;
        ans += edge[i].w;
        bcj[v] = u;
        cnt++;
        if (cnt == n - 1) break;   
    }
}

int main()
{
    scanf("%d %d", &n, &m);
	memset(bcj, -1, sizeof bcj);
	for (int i = 0; i < m; ++i) {
	    scanf("%d %d %d", &edge[i].u, &edge[i].v, &edge[i].w);
	}
	kruskal();
	if (cnt == n-1)
	    printf("%d\n", ans);
	else
	   	printf("orz\n");
	
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值