题目链接:https://www.luogu.com.cn/problem/P3366
最小生成树算法详解:https://blog.csdn.net/weixin_43772166/article/details/107377886
题目描述
如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz
输入输出格式
输入格式:
第一行包含两个整数N、M,表示该图共有N个结点和M条无向边。(N<=5000,M<=200000)
接下来M行每行包含三个整数Xi、Yi、Zi,表示有一条长度为Zi的无向边连接结点Xi、Yi
输出格式:
输出包含一个数,即最小生成树的各边的长度之和;如果该图不连通则输出orz
输入输出样例
输入样例#1:
4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3
输出样例#1: 复制
7
说明
时空限制:1000ms,128M
数据规模:
对于20%的数据:N<=5,M<=20
对于40%的数据:N<=50,M<=2500
对于70%的数据:N<=500,M<=10000
对于100%的数据:N<=5000,M<=200000
样例解释:
所以最小生成树的总边权为2+2+3=7
prim算法
因为prim算法是取点,最后判断取的点数是否为n即可
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cstdio>
using namespace std;
const int N = 5e3;
const int INF = 0x3f3f3f3f;
bool vis[N + 5];
int dis[N + 5]; //存储生成树到其他非树节点的距离
int ma[N + 5][N + 5];
int n, m, ans;
void init()
{
ans = 0;
memset(vis, 0, sizeof vis);
for (int i = 0; i <= n; i++)
for (int j = 0; j <= n; j++)
ma[i][j] = ma[j][i] = (i == j ? 0 : INF);
}
void prim()
{
for (int i = 0; i <= n; i++)
dis[i] = ma[1][i];
dis[1] = 0;
vis[1] = true;
// 找到剩余的 n-1 个点
for (int i = 1; i < n; i++) {
int k = 0;
// 找到没有使用过的且离当前点边权最小的点
for (int j = 1; j <= n; j++)
if (!vis[j] && dis[j] < dis[k])
k = j;
vis[k] = true;
ans += dis[k];
// 更新生成树到每一个非树顶点的距离
for (int j = 1; j <= n; j++) {
if (dis[j] > ma[k][j])
dis[j] = ma[k][j];
}
}
}
int main(void)
{
int x, y, z;
scanf("%d %d", &n, &m);
init();
while (m--) {
scanf("%d %d %d", &x, &y, &z);
if (z < ma[x][y])
ma[x][y] = ma[y][x] = z;
}
prim();
int cnt = 0;
for (int i = 1; i <= n; i++) {
if (vis[i] == 1) {
cnt++;
}
}
if (cnt == n)
printf("%d\n", ans);
else
printf("orz");
return 0;
}
kruskal算法
因为kruskal算法是取边的,最后要判断一下取的边数是否等于n-1即可,如果等于n-1,表示是连通的。
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cstdio>
using namespace std;
const int N = 2e5;
typedef pair<int, int> P;
int bcj[5005];
int n, m, cnt, ans;
struct node {
int u, v, w;
inline bool operator < (const node &x) const {
return w < x.w;
}
} edge[200005];
int Find(int x)
{
if (bcj[x] < 0) return x;
return bcj[x] = Find(bcj[x]);
}
void Union(int x, int y)
{
x = Find(x), y = Find(y);
if (x == y) return ;
bcj[x] += bcj[y];
bcj[y] = x;
}
void kruskal()
{
cnt = ans = 0;
sort(edge, edge + m);
for (int i = 0; i < m; ++i) {
int u = Find(edge[i].u), v = Find(edge[i].v);
if (u == v) continue;
ans += edge[i].w;
bcj[v] = u;
cnt++;
if (cnt == n - 1) break;
}
}
int main()
{
scanf("%d %d", &n, &m);
memset(bcj, -1, sizeof bcj);
for (int i = 0; i < m; ++i) {
scanf("%d %d %d", &edge[i].u, &edge[i].v, &edge[i].w);
}
kruskal();
if (cnt == n-1)
printf("%d\n", ans);
else
printf("orz\n");
return 0;
}