网上已经有很多关于神经网络的教程,感觉把梯度下降全过程写出来的并不多,于是想到把这个过程写出来供大家参考。
这次搭建一个f(x)=x的模型,其中,x是一个8位向量,值取{0,1},输入层为8个单元,中间层使用三个单元,输出层为8个单元。构成一个8*3*8的神经网络。
约定符号:
double net_hidden——中间层输入
double net_out——输出层输入
double delta_hidden——梯度下降时参数
double delta_out——同上
double value_hidden——中间层输出
double value_out——输出层输出
double input[8][8];——输入
double output[8][8];——理想输出
直接上代码:
代码运行平台:VS2017 community Debug x86
#include<iostream>
#include<math.h>
#include<time.h>
using namespace std;
double sigmoid(double net)
{
return 1 / (1 + exp(-net));
}
double normd()
{
int r = rand();
double k = r % 100 /(double) 101;
k = exp(-k);
return k;
}
int main()
{
double input[8][8];
for (int i = 0;i < 8;i++)
{
for (int j = 0;j < 8;j++)
{
if (i == j)
input[i][j] = 1;
else
input[i][j] = 0;
}
}
double ou