最简单的人工神经网络的c++搭建

网上已经有很多关于神经网络的教程,感觉把梯度下降全过程写出来的并不多,于是想到把这个过程写出来供大家参考。
这次搭建一个f(x)=x的模型,其中,x是一个8位向量,值取{0,1},输入层为8个单元,中间层使用三个单元,输出层为8个单元。构成一个8*3*8的神经网络。
约定符号:
double net_hidden——中间层输入
double net_out——输出层输入
double delta_hidden——梯度下降时参数
double delta_out——同上
double value_hidden——中间层输出
double value_out——输出层输出
double input[8][8];——输入
double output[8][8];——理想输出
直接上代码:
代码运行平台:VS2017 community Debug x86
#include<iostream>
#include<math.h>
#include<time.h>
using namespace std;


double sigmoid(double net)
{
	return 1 / (1 + exp(-net));
}


double normd()
{
	int r = rand();
	double k = r % 100 /(double) 101;
	k = exp(-k);
	return k;
}


int main()
{
	double input[8][8];
	for (int i = 0;i < 8;i++)
	{
		for (int j = 0;j < 8;j++)
		{
			if (i == j)
				input[i][j] = 1;
			else
				input[i][j] = 0;
		}
	}

	double ou
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值