#include <iostream>
#include <cstdio>
using namespace std;
void move(int n,char from,char rely,char to)
{
if(n==1)
{
printf("%c -> %c\n",from,to);
}
else
{
move(n-1,from,to,rely);
printf("%c -> %c\n",from,to);
move(n-1,rely,from,to);
}
}
int main()
{
int n;
printf("请输入要移动的块数:\n");
scanf("%d",&n);
move(n,'a','b','c'); //a柱子依赖b柱子,移动到c柱子
return 0;
}
汉诺塔递归算法思路如下:
三个柱子:起点柱子:from,依赖柱子:rely,目标柱子:to
算法流程:
函数参数 n from rely to
n>=2时
把起点柱子from上的n-1个盘子依赖目标柱子to,移动到依赖柱子rely上。
把起点柱子from上的第n(参数中的n)个盘子移动到目标柱子to上。
把依赖柱子rely上的n-1个盘子依赖起点柱子from,移动到目标柱子to上。
n==1时,直接从起点柱子from移动到目标柱子to即可。
思考:
汉诺塔问题实际上是问题的分解,把问题分成子问题。
n>=2时,可以把问题分成3个子问题,其中第一个和第三个问题本身也是和母问题同样的类型,故可采用递归求解。