VJ2020-1-15

A CodeForces 1285A Mezo Playing Zoma
签到题,直接输出。注意原点也算

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int n;cin>>n;
	string s;cin>>s;
	cout<<n+1<<endl;
	return 0;
 } 

C CodeForces 1285C Fadi and LCM
暴力找因数,用GCD()判断两个因数的最大公因数是否为1,这样才能保证它俩的最小公倍数为X。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll x;
int gcd(int a,int b)
{
	return b==0?a:gcd(b,a%b); 
}
int main()
{
	while(cin>>x)
	{
		ll ans=x;
		for(ll i=1;i*i<=x;i++)
		{
			if(!(x%i))
			{
				ll a=i,b=x/i;
				if(gcd(a,b)==1)
				  ans=min(ans,b);
			}
		}
		cout<<ans<<" "<<x/ans<<endl;
	}
	return 0;
 } 

E CodeForces 1288A Deadline
1.暴力
2.用一个不等式x+1+d/(x+1)-1>=2√d-1

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int t;cin>>t;
	while(t--)
	{
		int n,d,f=0;cin>>n>>d;
		for(int i=0;i*i<=d;i++)
		{
			int t=d%(i+1);
			if(t) t=1;
			if(i+d/(i+1)+t<=n)
			{
				f=1;break;
			}
		}
		if(f)  cout<<"YES"<<endl; 
		else cout<<"NO"<<endl;
	}
	return  0;
}

F CodeForces 1288B Yet Another Meme Problem
等式推导

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int s[9]={9,99,999,9999,99999,999999,9999999,99999999,999999999};
int main()
{
	int t;cin>>t;
	while(t--)
	{
		ll a,b,cnt=0;
		cin>>a>>b;
		for(int i=8;i>=0;i--)
		  if(s[i]<=b)
		  {
			cnt=i+1;break;
		  }
		cout<<a*cnt<<endl;
	}
	return 0;
 } 

F CodeForces 1288B Yet Another Meme Problem
签到,按照题意写就行

#include<bits/stdc++.h>
using namespace std;
int main(){
	string s;
	while(cin>>s){
	int f=0;
	for(int i=0;i<s.size();i++)
		if(s[i]=='H'||s[i]=='Q'||s[i]=='9')
		{
			f=1;break;
		}
	if(f)  cout<<"YES"<<endl;
	else  cout<<"NO"<<endl;
	} 
	return 0;
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值