seaborn学习2:displot()

Seaborn的displot函数提供了一种方便的方式来可视化数据的单变量或双变量分布,支持直方图、核密度估计和ECDF。它可以创建分面网格,对数据进行分组、分面、颜色映射和大小调整。通过设置参数如'kind'(hist、kde、ecdf)、'hue'、'size'、'style'等,可以定制各种视觉效果。示例代码展示了如何使用displot展示不同类型的分布图,并结合内置数据集进行演示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

displot()

此函数提供了对多种方法的访问,用于可视化数据的单变量或二变量分布,包括由语义映射和跨多个子图的分面定义的数据子集。
seaborn.displot(data=None, *, x=None, y=None, hue=None, row=None, col=None, weights=None, kind='hist', rug=False, rug_kws=None, log_scale=None, legend=True, palette=None, hue_order=None, hue_norm=None, color=None, col_wrap=None, row_order=None, col_order=None, height=5, aspect=1, facet_kws=None, **kwargs)

可以分别使用:

histplot() == (with kind="hist"; the default)
kdeplot() == (with kind="kde")
ecdfplot() == (with kind="ecdf"; univariate-only)

参数:

  • data

    输入数据结构。可以是可分配给命名变量的长格式向量集合,也可以是将在内部重塑的宽格式数据集。

参数:x, ydata中的变量名

输入数据的变量;数据必须为数值型。

hue: data中的名称,可选

将会产生具有不同颜色的元素的变量进行分组。这些变量可以是类别变量或者数值型变量,尽管颜色映射在后面的情况中会有不同的表现。

sizedata中的名称,可选

将会产生具有不同尺寸的元素的变量进行分组。这些变量可以是类别变量或者数值型变量,尽管尺寸映射在后面的情况中会有不同的表现。

styledata中的名称,可选

将会产生具有不同风格的元素的变量进行分组。这些变量可以为数值型,但是通常会被当做类别变量处理。

data:DataFrame

长格式的 DataFrame,每列是一个变量,每行是一个观察值。

row, coldata中的变量名,可选

确定网格的分面的类别变量。

col_wrap:int, 可选

以此宽度“包裹”列变量,以便列分面跨越多行。与row分面不兼容。

row_order, col_order:字符串列表,可选

以此顺序组织网格的行和/或列,否则顺序将从数据对象中推断。

palette:色盘名,列表,或者字典,可选

用于hue变量的不同级别的颜色。应当是color_palette()可以解释的东西,或者将色调级别映射到 matplotlib 颜色的字典。

hue_order:列表,可选

指定hue变量层级出现的顺序,否则会根据数据确定。当hue变量为数值型时与此无关。

hue_norm:元组或者 Normalize 对象,可选

hue变量为数值型时,用于数据单元的 colormap 的标准化。如果hue为类别变量则与此无关。

sizes:列表、典或者元组,可选

当使用sizes时,用于确定如何选择尺寸。此变量可以一直是尺寸值的列表或者size变量的字典映射。当size为数值型时,此变量也可以是指定最小和最大尺寸的元组,这样可以将其他值标准化到这个范围。

size_order:列表,可选

指定size变量层次的表现顺序,不指定则会通过数据确定。当size变量为数值型时与此无关。

size_norm:元组或者 Normalize 对象,可选

size变量为数值型时,用于数据单元的 scaling plot 对象的标准化。

legend:“brief”, “full”, 或者 False, 可选

用于决定如何绘制坐标轴。如果参数值为“brief”, 数值型的hue以及size变量将会被用等间隔采样值表示。如果参数值为“full”, 每组都会在坐标轴中被记录。如果参数值为“false”, 不会添加坐标轴数据,也不会绘制坐标轴。

kind:string, 可选

绘制图的类型,与 seaborn 相关的图一致。可选项为(scatterline).

height:标量, 可选

每个 facet 的高度(英寸)。参见aspect

aspect:标量, 可选

每个 facet 的长宽比,因此“长宽比*高度”可以得出每个 facet 的宽度(英寸)。

facet_kws:dict, 可选

以字典形式传给FacetGrid的其他关键字参数.

kwargs:键值对

传给后续绘制函数的其他关键字参数。

返回值:gFacetGrid

返回包含图像的FacetGrid对象,图像可以进一步调整。

具体看官方文档:

http://seaborn.pydata.org/generated/seaborn.displot.html#seaborn.displot

import seaborn as sns
%matplotlib inline
import numpy as np
np.random.seed(1)
data = np.random.normal(size=100)
sns.displot(x=data)

在这里插入图片描述

np.random.seed(1)
data = np.random.normal(size=100)
sns.displot(x=data,kind="hist")

在这里插入图片描述

np.random.seed(1)
data = np.random.normal(size=100)
sns.displot(x=data,kind="kde")

在这里插入图片描述

np.random.seed(1)
data = np.random.normal(size=100)
sns.displot(x=data,kind="ecdf")

在这里插入图片描述

np.random.seed(1)
data = np.random.normal(size=100)
sns.displot(x=data,kind="hist",kde = True,color="red")

在这里插入图片描述

以自带数据集为例

#企鹅种类
penguins = pd.read_csv("penguins.csv")
penguins

在这里插入图片描述

sns.displot(data=penguins,x="bill_length_mm")

在这里插入图片描述

sns.displot(data=penguins,x="bill_length_mm",bins = 100)

在这里插入图片描述

sns.displot(data=penguins,x="bill_length_mm",bins = 100,kde=True)

在这里插入图片描述

sns.displot(data=penguins,x="bill_length_mm",hue="species")

在这里插入图片描述

sns.displot(data=penguins,x="bill_length_mm",hue="species",shrink = 0.7)

在这里插入图片描述

sns.displot(data=penguins,x="bill_length_mm",kind="kde")

在这里插入图片描述

sns.displot(data=penguins,x="bill_length_mm",kind="kde",hue="species")

在这里插入图片描述

sns.displot(data=penguins,x="bill_length_mm",kind="kde",col="species")

在这里插入图片描述

sns.displot(data=penguins,x="bill_length_mm",kind="kde",row="species",col="sex")

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

<编程路上>

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值