局部最优是什么,能不能推出全局最优
455.分发饼干:
思路 :
先排序,大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的。这里的局部最优就是大饼干喂给胃口大的(先胃口后饼干),充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。
代码:
// 版本一
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s) {
sort(g.begin(), g.end());
sort(s.begin(), s.end());
int index = s.size() - 1; // 饼干数组的下标
int result = 0;
for (int i = g.size() - 1; i >= 0; i--) { // 遍历胃口
if (index >= 0 && s[index] >= g[i]) { // 遍历饼干
result++;
index--;
}
}
return result;
}
};
只用if没用for,逻辑比较简单
- 时间复杂度:O(nlogn)
- 空间复杂度:O(1)
同理可以遍历最小的胃口,用最小的饼干满足(先饼干后胃口),反过来不行,要知道是什么在遍历,什么满足后累加
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s) {
sort(g.begin(),g.end());
sort(s.begin(),s.end());
int index = 0;
for(int i = 0; i < s.size(); i++) { // 饼干
if(index < g.size() && g[index] <= s[i]){ // 胃口
index++;
}
}
return index;
}
};
两个循环的顺序改变了,先遍历的饼干,在遍历的胃口,这是因为遍历顺序变了,我们是从小到大遍历。
376.摆动序列
思路:
局部最优就是每个坡只有两个元素,全局最优就是最长摆动序列。不需要删除元素,只需要计算个数
这是我们思考本题的一个大题思路,但本题要考虑三种情况:
- 情况一:上下坡中有平坡
- 情况二:数组首尾两端
- 情况三:单调坡中有平坡
情况一:上下坡中有平坡
例如 [1,2,2,2,1]这样的数组,如图:
它的摇摆序列长度是多少呢? 其实是长度是 3,也就是我们在删除的时候 要不删除左面的三个 2,要不就删除右边的三个 2。
如图,可以统一规则,删除左边的三个 2:
在图中,当 i 指向第一个 2 的时候,prediff > 0 && curdiff = 0
,当 i 指向最后一个 2 的时候 prediff = 0 && curdiff < 0
。
如果我们采用,删左面三个 2 的规则,那么 当 prediff = 0 && curdiff < 0
也要记录一个峰值,因为他是把之前相同的元素都删掉留下的峰值。
所以我们记录峰值的条件应该是: (preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)
,为什么这里允许 prediff == 0 ,就是为了 上面我说的这种情况。
情况二:数组首尾两端
所以本题统计峰值的时候,数组最左面和最右面如何统计呢?
题目中说了,如果只有两个不同的元素,那摆动序列也是 2。
例如序列[2,5],如果靠统计差值来计算峰值个数就需要考虑数组最左面和最右面的特殊情况。
因为我们在计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i])的时候,至少需要三个数字才能计算,而数组只有两个数字。
这里我们可以写死,就是 如果只有两个元素,且元素不同,那么结果为 2。
不写死的话,如何和我们的判断规则结合在一起呢?
可以假设,数组最前面还有一个数字,那这个数字应该是什么呢?
之前我们在 讨论 情况一:相同数字连续 的时候, prediff = 0 ,curdiff < 0 或者 >0 也记为波谷。
那么为了规则统一,针对序列[2,5],可以假设为[2,2,5],这样它就有坡度了即 preDiff = 0,如图:
针对以上情形,result 初始为 1(默认最右面有一个峰值),此时 curDiff > 0 && preDiff <= 0,那么 result++(计算了左面的峰值),最后得到的 result 就是 2(峰值个数为 2 即摆动序列长度为 2)
情况三:单调坡度有平坡
在版本一中,我们忽略了一种情况,即 如果在一个单调坡度上有平坡,例如[1,2,2,2,3,4],如图:
图中,我们可以看出,版本一的代码在三个地方记录峰值,但其实结果因为是 2,因为 单调中的平坡 不能算峰值(即摆动)。
之所以版本一会出问题,是因为我们实时更新了 prediff。
那么我们应该什么时候更新 prediff 呢?
我们只需要在 这个坡度 摆动变化的时候,更新 prediff 就行,这样 prediff 在 单调区间有平坡的时候 就不会发生变化,造成我们的误判。
代码:
//手撕
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
int preinf = 0;
int curinf = 0;
int result = 1;
for (int i = 0; i < nums.size()-1; i++){
curinf = nums[i+1]-nums[i];
if(preinf >=0 &&curinf<0 ||preinf <=0 &&curinf>0 ){
result += 1;
preinf =curinf;
}
}
return result;
}
};
//卡哥代码
// 版本二
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
if (nums.size() <= 1) return nums.size();
int curDiff = 0; // 当前一对差值
int preDiff = 0; // 前一对差值
int result = 1; // 记录峰值个数,序列默认序列最右边有一个峰值
for (int i = 0; i < nums.size() - 1; i++) {
curDiff = nums[i + 1] - nums[i];
// 出现峰值
if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
result++;
preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff
}
}
return result;
}
};
53.最大子序和:
思路:
局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。
全局最优:选取最大“连续和”
局部最优的情况下,并记录最大的“连续和”,可以推出全局最优。
从代码角度上来讲:遍历 nums,从头开始用 count 累积,如果 count 一旦加上 nums[i]变为负数,那么就应该从 nums[i+1]开始从 0 累积 count 了,因为已经变为负数的 count,只会拖累总和。
这相当于是暴力解法中的不断调整最大子序和区间的起始位置。
那有同学问了,区间终止位置不用调整么? 如何才能得到最大“连续和”呢?
区间的终止位置,其实就是如果 count 取到最大值了,及时记录下来了。例如如下代码:
if (count > result) result = count;
这样相当于是用 result 记录最大子序和区间和(变相的算是调整了终止位置)。
如动画所示:
红色的起始位置就是贪心每次取 count 为正数的时候,开始一个区间的统计
代码:
//手搓
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int count = 0;
int result = INT_MIN;
for(int i = 0; i < nums.size(); i++){
count += nums[i];
if(count > result) result = count;
if(count < 0) count = 0;
}
return result;
}
};
//卡哥代码
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int result = INT32_MIN;
int count = 0;
for (int i = 0; i < nums.size(); i++) {
count += nums[i];
if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)
result = count;
}
if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
}
return result;
}
};
- 时间复杂度:O(n)
- 空间复杂度:O(1)