变压器的二次侧电压分析

参考:https://blog.csdn.net/qq_29180475/article/details/105779644

同名端

可以理解为从这端输入电流,两个线圈产生的磁通方向相同。根据右手定则也很好判断,两个线圈在同一条直的铁芯缠绕方式相同时,开始的两端就是同名端
在这里插入图片描述
下面这个是一个环形铁芯可根据在铁芯中产生磁通方向判断。

在这里插入图片描述

磁通链和电流变化关系

参考:https://zhuanlan.zhihu.com/p/149830125
直流加在电感两端的电流和电压变化曲线。
在这里插入图片描述
电流和磁通链的关系是
ψ L   =   N Φ L = L ⋅ i ψ_{L}\ =\ NΦ_{L}=L\cdot i ψL = NΦL=Li
电压和磁通的关系
在这里插入图片描述

变压器两端电压电流通过磁通链变化传递关系

在这里插入图片描述

通过直流激励电感分析原线圈和副线圈的电流电压变化

原线圈端直流电源后原线圈的电压电流随时间变化如下,
在这里插入图片描述
根据感应电压磁通链的关系,以及磁通链和电流的关系可知副线圈的感应电压原线圈的电流变化斜率成正比。副线圈电压变化和原线圈基本走向一致,不同的是线圈匝数导致的数值不同。
在这里插入图片描述

原线圈和副线圈的电压方向分析

从下图可以看出,虽然是同名端,但原线圈是电流从同名端流入而副线圈是从同名端流出
在这里插入图片描述
在这里插入图片描述

从电源和负载方面分析

将变压器做为一个整体来看,变压器的原线圈在一次侧就是做为负载,而变压器的副线圈在二次侧做为负载的电源。所以同名端相对另一端的电压正负性是一样的。
在这里插入图片描述

从磁通链变化分析

当铁芯中磁通链增加,副线圈会产生阻止这种磁通链变化的电压。根据同名端定义,同时流入同名端会产生相同方向的磁通链。但这种阻止的感应电压会在原线圈增加磁通链,而副线圈会产生相反方向的磁通链,这样的电流必然是相反的。如下图,若判断同名端,则同时流入产生相同磁通链,但做为感应电流为了阻止这种磁通链变化,所以一定产生相反电流。
在这里插入图片描述

一个小实验

在这里插入图片描述
如上图,在铁芯的副线圈端连接一个二极管,注意方向。
操作步骤,(为了防止电源烧毁,尽量减少原线圈通电时间,和增加线圈匝数,一般电源有防短路功能。)
1,先接好电源一端,不要把电源两端都连接上,把二极管先连接好
2,然后把电源另一端触碰接触,并快速断开,发现断开的时候二极管闪一下
分析
同名端的电压相对于另一端电压的极性是不改变的。当左侧接入电源,导致副线圈的同名端4的电压高于3,这时由于二极管的特性不能导通,当断电后磁通链减少,副线圈产生相反电流,所以导通。
当然若这个二极管接的是反向的,那么但接接通电源时led灯会闪一下

### 变压器一次二次电压电流关系 变压器是一种利用电磁感应理工作的电气设备,其主要功能是在电力传输过程中实现电压变换。一次二次之间的电压和电流关系由匝数比以及功率守恒定律决定。 #### 1. 基本公式 对于理想变压器,假设一次绕组匝数为 \(N_1\),二次绕组匝数为 \(N_2\),一次输入电压为 \(V_1\),二次输出电压为 \(V_2\),一次电流为 \(I_1\),二次电流为 \(I_2\),则有以下基本公式: - **电压比例关系** \[ \frac{V_1}{V_2} = \frac{N_1}{N_2} \] 这意味着一次二次电压之比等于它们的匝数比[^1]。 - **电流比例关系** 由于理想变压器中的磁通量保持不变,且忽略损耗的情况下,输入功率等于输出功率 (\(P_{in} = P_{out}\)),因此可以得出: \[ V_1 I_1 = V_2 I_2 \] 进一步推导得到: \[ \frac{I_1}{I_2} = \frac{N_2}{N_1} \] 这表明一次二次的电流成反比于匝数比。 #### 2. 极性和相位关系 在实际应用中,变压器通常设计为减极性结构,目的是为了让一次二次电压具有相同的相位。如果采用加极性,则会引入 180° 的相位差。具体来说,当一次施加正弦波形电压时,二次产生的感应电动势方向取决于绕组的方向及其连接方式。 #### 3. 实际计算示例 考虑一台降压变压器,已知参数如下: - 一次电压 \(V_1 = 220 \, \text{V}\) - 二次电压 \(V_2 = 110 \, \text{V}\) - 负载消耗功率 \(P_L = 550 \, \text{W}\) 根据上述公式可求解各物理量: - 匝数比:\(k = \frac{V_1}{V_2} = \frac{220}{110} = 2\)[^1] - 输出电流:\(I_2 = \frac{P_L}{V_2} = \frac{550}{110} = 5 \, \text{A}\) - 输入电流:\(I_1 = \frac{P_L}{V_1} = \frac{550}{220} = 2.5 \, \text{A}\)[^1] 验证电流比例关系是否成立: \[ \frac{I_1}{I_2} = \frac{2.5}{5} = \frac{1}{2}, \quad k^{-1} = \frac{1}{2}. \] 以上结果一致,说明理论分析正确。 ```python # Python 计算示例 def transformer_calculations(V1, V2, PL): # 参数初始化 N_ratio = V1 / V2 # 匝数比 I2 = PL / V2 # 二次电流 I1 = PL / V1 # 一次电流 return {"匝数比": N_ratio, "一次电流(A)": I1, "二次电流(A)": I2} result = transformer_calculations(220, 110, 550) print(result) ``` 运行此代码将返回字典形式的结果,便于直观理解数值间的关系。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值