Hive分桶查询和其他查询函数

分桶及抽样查询

分桶表数据存储

分区针对的是数据的存储路径;分桶针对的是数据文件。

分区提供一个隔离数据和优化查询的便利方式。不过,并非所有的数据集都可形成合理的分区,特别是之前所提到过的要确定合适的划分大小这个疑虑。

分桶是将数据集分解成更容易管理的若干部分的另一个技术。

1.先创建分桶表,通过直接导入数据文件的方式

(1)数据准备

student.txt

1001	ss1
1002	ss2
1003	ss3
1004	ss4
1005	ss5
1006	ss6
1007	ss7
1008	ss8
1009	ss9
1010	ss10
1011	ss11
1012	ss12
1013	ss13
1014	ss14
1015	ss15
1016	ss16

(2)创建分桶表

create table stu_buck(id int, name string)
clustered by(id)
into 4 buckets
row format delimited fields terminated by '\t';

(3)查看表结构

hive (default)> desc formatted stu_buck;
Num Buckets:            4     

(4)导入数据到分桶表中

hive (default)> load data local inpath '/root/datas/stu_bucket.txt' into table stu_buck;

(5)查看创建的分桶表

发现并没有分桶成四个文件,这是因为我们是使用的load加载方式,这是直接把本地文件上传到hdfs中,这种方式是不会帮你分桶的,试一下使用insert方式

首先清空原来的表

hive (default)> truncate table stu_buck; 

新建一个stu表

hive (default)> create table stu(id int,name string)
              > row format delimited fields terminated by '\t';

导入数据

hive (default)> load data local inpath '/root/datas/stu_bucket.txt' into table stu; 

将stu表中的数据导入到stu_buck里面去

hive (default)> insert into table stu_buck
              > select * from stu;

继续查看

还是只有一个文件

我们再给它设置几个属性,再试一次

hive (default)> set hive.enforce.bucketing=true;
hive (default)> set mapreduce.job.reduces=-1;
hive (default)> truncate table stu_buck;
hive (default)> insert into table stu_buck
              > select * from stu;

我们查看这个表的内容,发现

分桶抽样查询

对于非常大的数据集,有时用户需要使用的是一个具有代表性的查询结果而不是全部结果。Hive可以通过对表进行抽样来满足这个需求。

查询表stu_buck中的数据。

hive (default)> select * from stu_buck tablesample(bucket 1 out of 4 on id);

注:tablesample是抽样语句,语法:TABLESAMPLE(BUCKET x OUT OF y) 。

y必须是table总bucket数的倍数或者因子。hive根据y的大小,决定抽样的比例。例如,table总共分了4份,当y=2时,抽取(4/2=)2个bucket的数据,当y=8时,抽取(4/8=)1/2个bucket的数据。

x表示从哪个bucket开始抽取,如果需要取多个分区,以后的分区号为当前分区号加上y。例如,table总bucket数为4,tablesample(bucket 1 out of 2),表示总共抽取(4/2=)2个bucket的数据,抽取第1(x)个和第3(x+y)个bucket的数据。

注意:x的值必须小于等于y的值,否则

FAILED: SemanticException [Error 10061]: Numerator should not be bigger than denominator in sample clause for table stu_buck

其他常用查询函数

空字段赋值

  1. 函数说明

NVL:给值为NULL的数据赋值,它的格式是NVL( string1, replace_with)。它的功能是如果string1为NULL,则NVL函数返回replace_with的值,否则返回string1的值,如果两个参数都为NULL ,则返回NULL。

  1. 数据准备:之前的emp表

  1. 查询:如果员工的comm为NULL,则用-1代替
hive (default)> select nvl(comm,-1) from emp; 

  1. 查询:如果员工的comm为NULL,则用领导id代替
hive (default)> select nvl(comm,mgr) from emp; 

时间类

1)date_format:格式化时间

hive (default)> select date_format('2019-06-29','yyyy-MM-dd'); 
OK
_c0
2019-06-29

2)date_add:时间跟天数相加

hive (default)> select date_add('2019-06-29',5); OK
_c0
2019-07-04
 
hive (default)> select date_add('2019-06-29',-5); OK
_c0
2019-06-24

3)date_sub:时间跟天数相减

hive (default)> select date_sub('2019-06-29',5); OK
_c0
2019-06-24
 
hive (default)> select date_sub('2019-06-29 12:12:12',5); OK
_c0
2019-06-24
 
hive (default)> select date_sub('2019-06-29',-5); OK
_c0
2019-07-04

4)datediff:两个时间相减

hive (default)> select datediff('2019-06-29','2019-06-24'); 
OK
_c0 
5
 
hive (default)> select datediff('2019-06-24','2019-06-29'); 
OK
_c0
-5
 
hive (default)> select datediff('2019-06-24 12:12:12','2019-06-29'); 
OK
_c0
-5
 
hive (default)> select datediff('2019-06-24 12:12:12','2019-06-29 13:13:13');
OK
_c0
-5

CASE WHEN

  1. 数据准备,新建一个文件emp_sex.txt
   悟空    A       男
   大海    A       男
   宋宋    B       男
   凤姐    A       女
   婷姐    B       女
   婷婷    B       女

  1. 需求

求出不同部门男女各多少人。结果如下:

A     2       1
B     1       2

  1. 创建hive表并导入数据
hive (default)> create table emp_sex(name string,dept_id string,sex string)
              > row format delimited fields terminated by '\t';
hive (default)> load data local inpath '/root/datas/emp_sex.txt' into table emp_sex;

  1. 按需求查询数据
hive (default)> select dept_id,
              > sum(case sex when '男' then 1 else 0 end) male_count,
              > sum(case sex when '女' then 1 else 0 end) female_count
              > from emp_sex group by dept_id;

case sex when '男' then 1 else 0 end
这个解释为,当sex为男的时候,置为1,否者置为0
然后将所有的1和0求和,就能统计性别人数了   

行转列

  1. 相关函数说明

CONCAT(string A/col, string B/col…):返回输入字符串连接后的结果,支持任意个输入字符串;

CONCAT_WS(separator, str1, str2,…):它是一个特殊形式的 CONCAT()。第一个参数剩余参数间的分隔符。分隔符可以是与剩余参数一样的字符串。如果分隔符是 NULL,返回值也将为 NULL。这个函数会跳过分隔符参数后的任何 NULL 和空字符串。分隔符将被加到被连接的字符串之间,注意,要分隔的字段必须是string或者数组;

COLLECT_SET(col):函数只接受基本数据类型,它的主要作用是将某字段的值进行去重汇总,产生array类型字段。

0: jdbc:hive2://h1:10000> select collect_set(dname) from dept; 

结果:

  1. 数据准备
孙悟空  白羊座  A
大海    射手座  A
宋宋    白羊座  B
猪八戒  白羊座  A
凤姐    射手座  A

3.需求

把星座和血型一样的人归类到一起。结果如下:

射手座,A            大海|凤姐
白羊座,A            孙悟空|猪八戒
白羊座,B            宋宋

4.创建hive表

create table person_info(
name string,
constellation string,
blood_type string)
row format delimited fields terminated by "\t";

  1. 导入数据
load data local inpath '/root/datas/person_info.txt' into table person_info; 

  1. 先拼接星座和血型
select concat_ws(',',constellation,blood_type),name from person_info; 

在这里插入图片描述

  1. 按需求查询数据
select
    t1.base,
    concat_ws('|', collect_set(t1.name)) name
from
    (select
        name,
        concat(constellation, ",", blood_type) base
    from
        person_info) t1
group by
    t1.base;
    
分析过程:
    t1表即步骤6中生成的那张表,这是基于那张表上进行的后续操作,从from到group by的过程都是用于生成那张表
    concat_ws('|', collect_set(t1.name)) name这个步骤的作用是将分组之后的内容
    统计成数组,然后用“|”来分割显示

列转行

1.函数说明

EXPLODE(col):将hive一列中复杂的array或者map结构拆分成多行。

LATERAL VIEW

用法:LATERAL VIEW udtf(expression) tableAlias AS columnAlias

解释:它能够将一列数据拆成多行数据,在此基础上可以对拆分后的数据进行聚合。

  1. 数据准备
《疑犯追踪》	悬疑,动作,科幻,剧情
《Lie to me》	悬疑,警匪,动作,心理,剧情
《战狼2》	战争,动作,灾难

3.需求

将电影分类中的数组数据展开。结果如下:

《疑犯追踪》      悬疑
《疑犯追踪》      动作
《疑犯追踪》      科幻
《疑犯追踪》      剧情
《Lie to me》   悬疑
《Lie to me》   警匪
《Lie to me》   动作
《Lie to me》   心理
《Lie to me》   剧情
《战狼2》        战争
《战狼2》        动作
《战狼2》        灾难

4.创建movie_info表导入数据

create table movie_info(
    movie string,
    category array<string>)
row format delimited fields terminated by "\t"
collection items terminated by ",";

  1. 导入数据
load data local inpath '/root/datas/movie.txt' into table movie_info; 

  1. 尝试将列数据分隔开
select explode(category) from movie_info; 

7.按需求查询数据

select
    movie,
    category_name
from
    movie_info lateral view explode(category) table_tmp as category_name;

我的解析:

movie_info lateral view explode(category) table_tmp as category_name;
这是movie_info联合explode炸开的表新建的一个视图

查看from的全部内容

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页