多元回归和Logistic回归

什么是线性回归

  • 有监督学习 => 学习样本为 D = { ( x i , y i ) } i = 1 N D=\{(x_i,y_i)\}^N_{i=1} D={ (xi,yi)}i=1N
  • 输出/预测的结果 y i y_i yi连续变量
  • 需要学习映射 f : x → y f:x→y f:xy
  • 假定输入x与输出y之间有线性相关关系

一元线性回归

y = a x + b y=ax+b y=ax+b

多元线性回归

损失函数(loss function)

我们要找到最好的权重/参数 [ θ 0 , θ 1 , . . . , θ n ] = θ [\theta_0,\theta_1,...,\theta_n]=\theta [θ0,θ1,...,θn]=θ

我们把x到y的映射函数f记作 θ \theta θ的函数 h θ ( x ) h_\theta(x) hθ(x)

定义损失函数为:

梯度下降

逐步最小化损失函数的过程
如同下山,找准方向(梯度),每次迈进一小步,直至山底(注:这里的 1 2 m \frac{1}{2m} 2m1只是一个系数,加上去是只是为了计算方便,下面的笔记中可能有些地方会省去,请勿在意)

在坐标系中的表示方法如下

假如现在有n个特征/变量 x j ( j = 1... n ) x_j(j=1...n) xj(j=1...n)

Tip1:调整学习速率

小心翼翼地调整学习率

举例:

上图左边黑色为损失函数的曲线,假设从左边最高点开始,如果学习率调整的刚刚好,比如红色的线,就能顺利找到最低点。如果学习率调整的太小,比如蓝色的线,就会走的太慢,虽然这种情况给足够多的时间也可以找到最低点,实际情况可能会等不及出结果。如果 学习率调整的有点大,比如绿色的线,就会在上面震荡,走不下去,永远无法到达最低点。还有可能非常大,比如黄色的线,直接就飞出去了,更新参数的时候只会发现损失函数越更新越大。

虽然这样的可视化可以很直观观察,但可视化也只是能在参数是一维或者二维的时候进行,更高维的情况已经无法可视化了。

解决方法就是上图右边的方案,将参数改变对损失函数的影响进行可视化。比如学习率太小(蓝色的线),损失函数下降的非常慢;学习率太大(绿色的线),损失函数下降很快,但马上就卡住不下降了;学习率特别大(黄色的线),损失函数就飞出去了;红色的就是差不多刚好,可以得到一个好的结果。

自适应学习率

举一个简单的思想:随着次数的增加,通过一些因子来减少学习率

  • 通常刚开始,初始点会距离最低点比较远,所以使用大一点的学习率

  • update好几次参数之后呢,比较靠近最低点了,此时减少学习率

  • 比如 η t = η t t + 1 \eta^t =\frac{\eta^t}{\sqrt{t+1}} ηt=t+1 ηt t t t 是次数。随着次数的增加, η t \eta^t ηt 减小

学习率不能是一个值通用所有特征,不同的参数需要不同的学习率

Adagrad 算法

每个参数的学习率都把它除上之前微分的均方根。解释:

普通的梯度下降为:

w t + 1 ← w t − η t g t w^{t+1} \leftarrow w^t -η^tg^t w

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值