# 使用Node2Vec对space_data进行压缩
import networkx as nx
from tqdm import tqdm
from sklearn.decomposition import PCA
from node2vec import Node2Vec
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
# 数据加载,构造图
G = nx.read_gml('football.gml')
print(type(G))
#G = nx.read_gml('football.gml', relabel=True)
print(len(G))
# 初始化Node2Vec模型
#model = DeepWalk(G, walk_length=10, num_walks=5, workers=1)
model = Node2Vec(G, walk_length = 10, num_walks = 5, p = 0.25, q = 4, workers = 1)
# 模型训练
result = model.fit(window=4, iter=20)
# 得到节点的embedding
print(result.wv.most_similar('EastCarolina'))
embeddings = result.wv
print(embeddings)
# 在二维空间中绘制所选节点的向量
def plot_nodes(word_list):
# 每个节点的embedding为100维
X = []
for item in word_list:
X.append(embeddings[item])
#print(X.shape)
# 将100维向量减少到2维
pca = PCA(n_components=2)
result = pca.fit_transform(X)
#print(result)
# 绘制节点向量
plt.figure(figsize=(12,9))
# 创建一个散点图的投影
plt.scatter(result[:, 0], result[:, 1])
for i, word in enumerate(list(word_list)):
plt.annotate(word, xy=(result[i, 0], result[i, 1]))
plt.show()
plot_nodes(result.wv.vocab)
美国大学生足球联赛数据集football——node2vec
最新推荐文章于 2025-04-12 21:33:50 发布