图神经网络实战(4)——基于Node2Vec改进嵌入质量

0. 前言

Node2Vec 是一种基于 DeepWalk 的架构,DeepWalk 主要由随机游走和 Word2Vec 两个组件构成,Node2Vec 通过改进随机游走的生成方式改进嵌入质量。
在本节中,我们将学习这些改进以及如何为给定的图找到最佳参数,实现 Node2Vec 架构,并将其与在 Zachary's Karate Club</

  • 101
    点赞
  • 96
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 94
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 94
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值