广度优先搜索、dijkstra算法与A*启发式搜索

leetcode:675.为高尔夫比赛砍树
题目要求:

你被请来给一个要举办高尔夫比赛的树林砍树。树林由一个 m x n 的矩阵表示, 在这个矩阵中:
0 表示障碍,无法触碰
1 表示地面,可以行走

比 1 大的数 表示有树的单元格,可以行走,数值表示树的高度
每一步,你都可以向上、下、左、右四个方向之一移动一个单位,如果你站的地方有一棵树,那么你可以决定是否要砍倒它。
你需要按照树的高度从低向高砍掉所有的树,每砍过一颗树,该单元格的值变为 1(即变为地面)。

你将从 (0, 0) 点开始工作,返回你砍完所有树需要走的最小步数。 如果你无法砍完所有的树,返回 -1 。
可以保证的是,没有两棵树的高度是相同的,并且你至少需要砍倒一棵树。

示例 1:
输入:forest = [[1,2,3],[0,0,4],[7,6,5]]
输出:6
解释:沿着上面的路径,你可以用 6 步,按从最矮到最高的顺序砍掉这些树。

示例 2:
输入:forest = [[1,2,3],[0,0,0],[7,6,5]]
输出:-1
解释:由于中间一行被障碍阻塞,无法访问最下面一行中的树。

示例 3:
输入:forest = [[2,3,4],[0,0,5],[8,7,6]]
输出:6
解释:可以按与示例 1 相同的路径来砍掉所有的树。
(0,0) 位置的树,可以直接砍去,不用算步数。
 
提示:
m == forest.length
n == forest[i].length
1 <= m, n <= 50
0 <= forest[i][j] <= 10^9

一、广度优先搜索

class Solution:
    def cutOffTree(self, forest: List[List[int]]) -> int:

        # 方法一:广度优先搜索
        # 时间复杂度:O(m * n * m * n)
        # 空间复杂度:O(m * n)
        m, n = len(forest), len(forest[0])

        def bfs(i, j, target):
            queue = [(i, j, 0)]
            visited = set((i, j))

            while queue:
                i, j, step = queue.pop(0)
                if forest[i][j] == target:
                    return i, j, step
                for new_i, new_j in [(i+1, j), (i-1, j), (i, j-1), (i, j+1)]:
                    if 0 <= new_i < m and 0 <= new_j < n and (new_i, new_j) not in visited and forest[new_i][new_j] >= 1:
                        queue.append((new_i, new_j, step + 1))
                        visited.add((new_i, new_j))
            return -1, -1, -1

        trees = sorted([forest[i][j] for i in range(m) for j in range(n) if forest[i][j] > 1])
        #print(trees)
        ans = 0
        i, j = 0, 0
        for tree in trees:
            new_i, new_j, step = bfs(i, j, tree)
            #print(tree, step)
            if step == -1:
                return -1
            ans += step
            i, j = new_i, new_j
        return ans

二、dijkstra算法

// 方法二:dijkstra算法
// 时间复杂度:O(m * n * log(m * n))
// 空间复杂度:O(m * n)
class Solution {
    int[][] dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};

    public int bfs(List<List<Integer>> forest, int i, int j, int[] target){
        int target_i = target[0];
        int target_j = target[1];
        //System.out.println(target_i);
        //System.out.println(target_j);

        if (i == target_i && j == target_j){
            return 0;
        }

        int m = forest.size();
        int n = forest.get(0).size();
        PriorityQueue<int[]> queue = new PriorityQueue<int[]>((a, b) -> a[0] - b[0]);
        boolean[][] visited = new boolean[m][n];
        queue.offer(new int[]{0, i * n + j});
        visited[i][j] = true;

        while (!queue.isEmpty()){
            int[] arr = queue.poll();
            int distance = arr[0], loc = arr[1];
            //System.out.println("distance:" + distance);
            //System.out.println("loc:" + loc);
            for (int index = 0; index < 4; ++index){
                int new_i = loc / n + dirs[index][0];
                int new_j = loc % n + dirs[index][1];
                //System.out.println("new_i:" + new_i + "new_j:" + new_j);
                if (0 <= new_i && new_i < m && 0 <= new_j && new_j < n){
                    if (!visited[new_i][new_j] && forest.get(new_i).get(new_j) > 0){
                        if (new_i == target_i && new_j == target_j){
                            return distance + 1;
                        }
                        queue.offer(new int[]{distance + 1, new_i * n + new_j});
                        visited[new_i][new_j] = true;
                    }
                }
            }       
        }
        return -1;
    }

    public int cutOffTree(List<List<Integer>> forest) {        
        List<int[]> trees = new ArrayList<int[]>();
        int m = forest.size();
        int n = forest.get(0).size();

        for (int i = 0; i < m; ++i){
            for (int j = 0; j < n; ++j){
                if (forest.get(i).get(j) > 1){
                    trees.add(new int[]{i, j});
                }
            }
        }
        Collections.sort(trees, (a, b) -> forest.get(a[0]).get(a[1]) - forest.get(b[0]).get(b[1]));
        //System.out.println(trees);

        int i = 0;
        int j = 0;
        int ans = 0;
        for (int index = 0; index < trees.size(); ++index){
            //System.out.println("trees.get(index):" + trees.get(index));
            int step = bfs(forest, i, j, trees.get(index));
            //System.out.println("step:" + step);
            if (step == -1){
                return -1;
            }
            ans += step;
            i = trees.get(index)[0];
            j = trees.get(index)[1];
        }
        return ans;
    }
}

三、A*启发式搜索

// 方法三:A*启发式算法
class Solution {
    int[][] dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};

    public int bfs(List<List<Integer>> forest, int i, int j, int[] target){
        int target_i = target[0];
        int target_j = target[1];
        //System.out.println(target_i);
        //System.out.println(target_j);

        if (i == target_i && j == target_j){
            return 0;
        }

        int m = forest.size();
        int n = forest.get(0).size();
        PriorityQueue<int[]> queue = new PriorityQueue<int[]>((a, b) -> a[0] - b[0]);
        boolean[][] visited = new boolean[m][n];
        queue.offer(new int[]{0, i * n + j});
        visited[i][j] = true;

        while (!queue.isEmpty()){
            int[] arr = queue.poll();
            int distance = arr[0], loc = arr[1];
            //System.out.println("distance:" + distance);
            //System.out.println("loc:" + loc);
            for (int index = 0; index < 4; ++index){
                int new_i = loc / n + dirs[index][0];
                int new_j = loc % n + dirs[index][1];
                //System.out.println("new_i:" + new_i + "new_j:" + new_j);
                if (0 <= new_i && new_i < m && 0 <= new_j && new_j < n){
                    if (!visited[new_i][new_j] && forest.get(new_i).get(new_j) > 0){
                        if (new_i == target_i && new_j == target_j){
                            return distance + 1;
                        }
                        queue.offer(new int[]{distance + 1, new_i * n + new_j});
                        visited[new_i][new_j] = true;
                    }
                }
            }       
        }
        return -1;
    }

    public int cutOffTree(List<List<Integer>> forest) {        
        List<int[]> trees = new ArrayList<int[]>();
        int m = forest.size();
        int n = forest.get(0).size();

        for (int i = 0; i < m; ++i){
            for (int j = 0; j < n; ++j){
                if (forest.get(i).get(j) > 1){
                    trees.add(new int[]{i, j});
                }
            }
        }
        Collections.sort(trees, (a, b) -> forest.get(a[0]).get(a[1]) - forest.get(b[0]).get(b[1]));
        //System.out.println(trees);

        int i = 0;
        int j = 0;
        int ans = 0;
        for (int index = 0; index < trees.size(); ++index){
            //System.out.println("trees.get(index):" + trees.get(index));
            int step = bfs(forest, i, j, trees.get(index));
            //System.out.println("step:" + step);
            if (step == -1){
                return -1;
            }
            ans += step;
            i = trees.get(index)[0];
            j = trees.get(index)[1];
        }
        return ans;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值