- 博客(8)
- 收藏
- 关注
原创 贝叶斯优化的三种实现(bayes_opt|hyperopt|optuna)
贝叶斯优化是当今黑盒函数估计领域最为先进和经典的方法,在同一套序贯模型下使用不同的代理模型以及采集函数、还可以发展出更多更先进的贝叶斯优化改进版算法,因此,贝叶斯优化的其算法本身就多如繁星,实现各种不同种类的贝叶斯优化的库也是琳琅满目,几乎任意一个专业用于超参数优化的工具库都会包含贝叶斯优化的内容。我们可以在以下页面找到大量可以实现贝叶斯优化方法的HPO库:https://www.automl.org/automl/hpo-packages/ ,其中大部分库都是由独立团队开发和维护,因此不同的库之间之间的优
2022-06-07 21:10:42 13344 15
转载 贝叶斯优化基础方法
贝叶斯优化方法是当前超参数优化领域的SOTA手段(State of the Art),可以被认为是当前最为先进的优化框架,它可以被应用于AutoML的各大领域,不止限于超参数搜索HPO的领域,更是可以被用于神经网络架构搜索NAS以及元学习等先进的领域。现代几乎所有在效率和效果上取得优异成果的超参数优化方法都是基于贝叶斯优化的基本理念而形成的,因此贝叶斯优化是整个AutoML中学习的重点。...
2022-06-07 16:57:42 17038 3
原创 Kraljic采购定位模型
卡拉杰克采购矩阵模型在采购管理中占据十分重要的地位,无论是供应战略管理、采购战略开发还是供应商战略定位管理、谈判战略的开发都起着十分重要的作用。
2022-05-22 16:44:00 6281
原创 workalendar基本使用
文章目录前言一、workalendar是什么?二、使用步骤1.安装2.使用示例官方示例如何通过workalendar够造节日特征总结前言最近在做一个消费者预定酒店是否成功的案例中,有日期类型的关键特征,在做特征工程中原本的日期数据例如:2022-05-05对建模没有实际帮助,考虑从中挖掘出节假日信息,使用到了workalendar这个库,本文是对相关操作的一些记录。一、workalendar是什么?Workalendar 是一个 Python 模块,它提供了能够处理日历、列出法定/宗教假期并提供
2022-05-09 15:56:25 1692
原创 离散特征的转码选择【OneHotEncoder、LabelEncoder、OrdinalEncoder、get_dummies】
如何进行离散特征的转码选择【OneHotEncoder、LabelEncoder、OrdinalEncoder、get_dummies】
2022-04-19 19:17:59 1543
原创 AttributeError: ‘CRF‘ object has no attribute ‘keep_tempfiles‘
AttributeError: 'CRF' object has no attribute 'keep_tempfiles'
2022-04-13 13:39:29 3473
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人