十三种工程设计优化问题

一、焊接梁设计问题

焊接梁设计问题(Welded Beam Design, WBD)是一个最小化问题,其中优化算法是为了降低设计的制造成本。该优化问题可以描述为寻找满足切应力( τ \tau τ)、弯曲应力( θ \theta θ)、梁条弯曲载荷( P c P_c Pc)、末端偏差( δ \delta δ)和边界条件等约束的四个设计变量——即梁条的长度( l l l)、高度( t t t)、厚度( b b b)和焊缝厚度( h h h),使得制造焊接梁的费用最小,因此焊接梁问题是一个典型的非线性规划问题。WBD问题的数学描述如下:
变量: l → = [ l 1   l 2   l 3   l 4 ] = [ h   l   t   b ] = [ x 1   x 2   x 3   x 4 ] (1) \overrightarrow l=[l_1\,l_2\,l_3\,l_4]=[h\,l\,t\,b]=[x_1\,x_2\,x_3\,x_4]\tag{1} l =[l1l2l3l4]=[hltb]=[x1x2x3x4](1)目标函数: f ( l → ) = 1.10471 l 1 2 l 2 + 0.04811 l 3 l 4 ( 14.0 + l 2 ) (2) f(\overrightarrow l)=1.10471l_1^2l_2+0.04811l_3l_4(14.0+l_2)\tag{2} f(l )=1.10471l12l2+0.04811l3l4(14.0+l2)(2)其中 f ( l → ) f(\overrightarrow l) f(l )表示制造焊接梁的费用,要求解的是费用最小化问题。
决策变量取值范围: 0.1 ≤ l 1 ≤ 2 (3) 0.1≤l_1≤2\tag{3} 0.1l12(3) 0.1 ≤ l 2 ≤ 10 (4) 0.1≤l_2≤10\tag{4} 0.1l210(4) 0.1 ≤ l 3 ≤ 10 (5) 0.1≤l_3≤10\tag{5} 0.1l310(5) 0.1 ≤ l 4 ≤ 2 (6) 0.1≤l_4≤2\tag{6} 0.1l42(6)约束条件: s 1 ( l → ) = τ ( l → ) − τ max ⁡ ≤ 0 (7) s_1(\overrightarrow l)=\tau(\overrightarrow l)-\tau_{\max}≤0\tag{7} s1(l )=τ(l )τmax0(7) s 2 ( l → ) = σ ( l → ) − σ max ⁡ ≤ 0 (8) s_2(\overrightarrow l)=\sigma(\overrightarrow l)-\sigma_{\max}≤0\tag{8} s2(l )=σ(l )σmax0(8) s 3 ( l → ) = δ ( l → ) − δ max ⁡ ≤ 0 (9) s_3(\overrightarrow l)=\delta(\overrightarrow l)-\delta_{\max}≤0\tag{9} s3(l )=δ(l )δmax0(9) s 4 ( l → ) = l 1 − l 4 ≤ 0 (10) s_4(\overrightarrow l)=l_1-l_4≤0\tag{10} s4(l )=l1l40(10) s 5 ( l → ) = P − P c ( l → ) ≤ 0 (11) s_5(\overrightarrow l)=P-P_c(\overrightarrow l)≤0\tag{11} s5(l )=PPc(l )0(11) s 6 ( l → ) = 0.125 − l 1 ≤ 0 (12) s_6(\overrightarrow l)=0.125-l_1≤0\tag{12} s6(l )=0.125l10(12) s 7 ( l → ) = 1.10471 l 1 2 + 0.04811 l 3 l 4 ( 14.0 + l 2 ) − 5.0 ≤ 0 (13) s_7(\overrightarrow l)=1.10471l_1^2+0.04811l_3l_4(14.0+l_2)-5.0≤0\tag{13} s7(l )=1.10471l12+0.04811l3l4(14.0+l2)5.00(13)其中, σ max ⁡ = 30000 \sigma_{\max}=30000 σmax=30000psi, P = 6000 P=6000 P=6000lb, L = 14 L=14 L=14in., δ max ⁡ = 0.25 \delta_{\max}=0.25 δmax=0.25in., E = 3 × 1 0 6 E=3×10^6 E=3×106psi, τ max ⁡ = 136000 \tau_{\max}=136000 τmax=136000psi, G = 1.2 × 1 0 7 G=1.2×10^7 G=1.2×107psi。约束条件(7)和约束条件(8)分别表示焊接梁承受的切应力和弯曲应力不得大于各自的最大极限值;约束条件(13)和约束条件(12)分别表示设计变量 h h h不得大于焊接梁横截面边长 b b b以及设计变量 h h h不得小于其最小极限值;约束条件(9)表示焊接梁的末端偏差量不得大于0.25。
约束条件中各个函数表达式可参考式(14)~式(18)。 τ ( l → ) = τ ′ 2 + 2 τ ′ τ ′ ′ ( l 2 / R ) + ( τ ′ ′ ) 2 (14) \tau(\overrightarrow l)=\sqrt {\tau'^2+2\tau'\tau''(l_2/R)+(\tau'')^2}\tag{14} τ(l )=τ2+2ττ(l2/R)+(τ)2 (14) τ ′ = P 2 l 1 l 2 ,   τ ′ ′ = M R / J ,   M = p ( L + l 2 / 2 ) (15) \tau'=\frac{P}{\sqrt{2}l_1l_2},\,\tau''=MR/J,\,M=p(L+l_2/2)\tag{15} τ=2 l1l2P,τ=MR/J,M=p(L+l2/2)(15) R = [ l 2 2 + ( l 1 + l 3 ) 2 ] 4 (16) R=\sqrt{\frac{[l_2^2+(l_1+l_3)^2]}{4}}\tag{16} R=4[l22+(l1+l3)2] (16) J = 2 { 2 l 1 l 2 [ l 2 2 12 + ( l 1 + l 3 ) 2 14 ] } (17) J=2\left\{\sqrt2l_1l_2\left[\frac{l_2^2}{12}+\frac{(l_1+l_3)^2}{14}\right]\right\}\tag{17} J=2{2 l1l2[12l22+14(l1+l3)2]}(17) P c ( l → ) = 4.013 E l 3 l 4 2 6 L 2 ( 1 − l 3 E 8 L G ) (18) P_c(\overrightarrow l)=\frac{4.013El_3l_4^2}{6L^2}\left(1-\frac{l_3\sqrt E}{8LG}\right)\tag{18} Pc(l )=6L24.013El3l42(18LGl3E )(18)

二、压缩弹簧设计问题

压缩弹簧设计(Compression Spring Design, CSD)的目标是在满足一定约束条件下最小化其质量 f ( x ) f(x) f(x),其中包含最小挠度、剪切应力、振荡频率以及外径限制4个不等式约束,弹簧圈平均直径 D ( x 2 ) D(x_2) D(x2)、弹簧金属丝直径 d ( x 1 ) d(x_1) d(x1)以及弹簧有效圈数 N ( x 3 ) N(x_3) N(x3) 3个设计变量。其具体数学模型如式(19)~式(24)所示。
目标函数: min ⁡ f ( x ) = ( N + 2 ) D d 2 (19) \min f(x)=(N+2)Dd^2\tag{19} minf(x)=(N+2)Dd2(19)约束条件: g 1 ( x ) = 1 − D 3 N 71785 d 4 ≤ 0 (20) g_1(x)=1-\frac{D^3N}{71785d^4}≤0\tag{20} g1(x)=171785d4D3N0(20) g 2 ( x ) = 4 D 2 − d D 12566 ( D d 3 − d 4 ) + 1 5108 d 2 − 1 ≤ 0 (21) g_2(x)=\frac{4D^2-dD}{12566(Dd^3-d^4)}+\frac{1}{5108d^2}-1≤0\tag{21} g2(x)=12566(Dd3d4)4D2dD+5108d2110(21) g 3 ( x ) = 1 − 140.45 d D 2 N ≤ 0 (22) g_3(x)=1-\frac{140.45d}{D^2N}≤0\tag{22} g3(x)=1D2N140.45d0(22) g 4 ( x ) = D + d 1.5 − 1 ≤ 0 (23) g_4(x)=\frac{D+d}{1.5}-1≤0\tag{23} g4(x)=1.5D+d10(23)边界约束: 0.05 ≤ x 1 ≤ 2 , 0.25 ≤ x 2 ≤ 1.3 , 2 ≤ x 3 ≤ 15 (24) 0.05≤x_1≤2,0.25≤x_2≤1.3,2≤x_3≤15\tag{24} 0.05x12,0.25x21.3,2x315(24)

三、压力容器设计问题

压力容器设计(Pressure Vessel Design, PVD)的目标是在满足生产需要的同时使其总费用 f ( x ) f(x) f(x)最少,其4个设计变量分别为:外壳厚度 T s ( x 3 ) T_s(x_3) Ts(x3)、封头厚度 T h ( x 4 ) T_h(x_4) Th(x4)、内半径 R ( x 1 ) R(x_1) R(x1)以及容器长度 L L L(x_2,不包含头部),其中 T s T_s Ts T h T_h Th为0.625的整数倍, R R R L L L为连续变量。具体数学模型如式(25)~式(30)所示。
目标函数: min ⁡ f ( x ) = 0.6224 x 1 x 3 x 4 + 1.7781 x 2 x 3 2 + 3.1661 x 1 2 x 4 + 19.84 x 1 2 x 3 (25) \min f(x)=0.6224x_1x_3x_4+1.7781x_2x_3^2+3.1661x_1^2x_4+19.84x_1^2x_3\tag{25} minf(x)=0.6224x1x3x4+1.7781x2x32+3.1661x12x4+19.84x12x3(25)约束条件: g 1 ( x ) = − x 1 + 0.0193 x 3 ≤ 0 (26) g_1(x)=-x_1+0.0193x_3≤0\tag{26} g1(x)=x1+0.0193x30(26) g 2 ( x ) = − x 2 + 0.00954 x 3 ≤ 0 (27) g_2(x)=-x_2+0.00954x_3≤0\tag{27} g2(x)=x2+0.00954x30(27) g 3 ( x ) = − π x 3 2 x 4 − 4 3 π x 3 2 + 1296000 ≤ 0 (28) g_3(x)=-\pi x_3^2x_4-\frac43\pi x_3^2+1296000≤0\tag{28} g3(x)=πx32x434πx32+12960000(28) g 4 ( x ) = x 4 − 240 ≤ 0 (29) g_4(x)=x_4-240≤0\tag{29} g4(x)=x42400(29)边界约束: 0 ≤ x 1 ≤ 99 , 0 ≤ x 2 ≤ 99 , 10 ≤ x 3 ≤ 200 , 10 ≤ x 4 ≤ 200 (30) 0≤x_1≤99,0≤x_2≤99,10≤x_3≤200,10≤x_4≤200\tag{30} 0x199,0x299,10x3200,10x4200(30)

四、轮系设计问题

齿轮系设计问题是机械工程中的一个无约束离散设计问题,目的是最小化齿轮比,齿轮比定义为输出轴角速度与输入轴角速度之比。将齿轮的齿数 n A ( = x 1 ) , n B ( = x 2 ) , n C ( = x 3 ) n_A(=x_1),n_B(=x_2),n_C(=x_3) nA(=x1),nB(=x2),nC(=x3) n D ( = x 4 ) n_D(=x_4) nD(=x4)视为设计变量,其数学模型如下:
目标函数: f ( X ) = ( 1 6.931 − x 3 x 2 x 1 x 4 ) 2 (31) f(X)=\left(\frac{1}{6.931}-\frac{x_3x_2}{x_1x_4}\right)^2\tag{31} f(X)=(6.9311x1x4x3x2)2(31)边界约束: 12 ≤ x i ≤ 60 ,    i = 1 , 2 , 3 , 4 (32) 12\leq x_i\leq60,\,\,i=1,2,3,4\tag{32} 12xi60,i=1,2,3,4(32)

五、减速器设计问题

在机械系统中,减速器是齿轮箱的重要部件之一,可用于多种应用。在该优化问题中,减速器的重量将在11个约束条件下最小化。该问题有7个变量,分别是齿面宽 b ( = x 1 ) b(=x_1) b(=x1)、齿轮模数 m ( = x 2 ) m(=x_2) m(=x2)、小齿轮中的齿数 z ( = x 3 ) z(=x_3) z(=x3)、轴承之间第一根轴的长度 l 1 ( = x 4 ) l_1(=x_4) l1(=x4)、轴承之间第二根轴的长度 l 2 ( = x 5 ) l_2(=x_5) l2(=x5)、第一根轴的直径 d 1 ( = x 6 ) d_1(=x_6) d1(=x6)和第二根轴的直径 d 2 ( = x 7 ) d_2(=x_7) d2(=x7)。该问题的数学公式如下:
目标函数: f ( X ) = 0.7854 x 1 x 2 2 ( 3.3333 x 3 2 + 14.9334 x 3 − 43.0934 ) − 1.508 x 1 ( x 6 2 + x 7 2 ) + 7.4777 ( x 6 3 + x 7 3 ) + 0.7854 ( x 4 x 6 2 + x 5 x 7 2 ) (33) f(X)=0.7854x_1x_2^2(3.3333x_3^2+14.9334x_3-43.0934)\newline-1.508x_1(x_6^2+x_7^2)+7.4777(x_6^3+x_7^3)+0.7854(x_4x_6^2+x_5x_7^2)\tag{33} f(X)=0.7854x1x22(3.3333x32+14.9334x343.0934)1.508x1(x62+x72)+7.4777(x63+x73)+0.7854(x4x62+x5x72)(33)约束条件: g 1 ( X ) = 27 x 1 x 2 2 x 3 − 1 ≤ 0 (34) g_1(X)=\frac{27}{x_1x_2^2x_3}-1\leq0\tag{34} g1(X)=x1x22x32710(34) g 2 ( X ) = 397.5 x 1 x 2 2 x 3 2 − 1 ≤ 0 (35) g_2(X)=\frac{397.5}{x_1x_2^2x_3^2}-1\leq0\tag{35} g2(X)=x1x22x32397.510(35) g 3 ( X ) = 1.93 x 4 3 x 2 x 6 4 x 3 − 1 ≤ 0 (36) g_3(X)=\frac{1.93x_4^3}{x_2x_6^4x_3}-1\leq0\tag{36} g3(X)=x2x64x31.93x4310(36) g 4 ( X ) = 1.93 x 5 3 x 2 x 7 4 x 3 − 1 ≤ 0 (37) g_4(X)=\frac{1.93x_5^3}{x_2x_7^4x_3}-1\leq0\tag{37} g4(X)=x2x74x31.93x5310(37) g 5 ( X ) = ( 745 x 4 / ( x 2 x 3 ) ) 2 + 16.9 × 1 0 6 110 x 6 3 − 1 ≤ 0 (38) g_5(X)=\frac{\sqrt{(745x_4/(x_2x_3))^2+16.9\times10^6}}{110x_6^3}-1\leq0\tag{38} g5(X)=110x63(745x4/(x2x3))2+16.9×106 10(38) g 6 ( X ) = ( 745 x 5 / ( x 2 x 3 ) ) 2 + 157.5 × 1 0 6 85 x 7 3 − 1 ≤ 0 (39) g_6(X)=\frac{\sqrt{(745x_5/(x_2x_3))^2+157.5\times10^6}}{85x_7^3}-1\leq0\tag{39} g6(X)=85x73(745x5/(x2x3))2+157.5×106 10(39) g 7 ( X ) = x 2 x 3 40 − 1 ≤ 0 (40) g_7(X)=\frac{x_2x_3}{40}-1\leq0\tag{40} g7(X)=40x2x310(40) g 8 ( X ) = 5 x 2 x 1 − 1 ≤ 0 (41) g_8(X)=\frac{5x_2}{x_1}-1\leq0\tag{41} g8(X)=x15x210(41) g 9 ( X ) = x 1 12 x 2 − 1 ≤ 0 (42) g_9(X)=\frac{x_1}{12x_2}-1\leq0\tag{42} g9(X)=12x2x110(42) g 10 ( X ) = 1.5 x 6 + 1.9 x 4 − 1 ≤ 0 (43) g_{10}(X)=\frac{1.5x_6+1.9}{x_4}-1\leq0\tag{43} g10(X)=x41.5x6+1.910(43) g 11 ( X ) = 1.1 x 7 + 1.9 x 5 − 1 ≤ 0 (44) g_{11}(X)=\frac{1.1x_7+1.9}{x_5}-1\leq0\tag{44} g11(X)=x51.1x7+1.910(44)边界约束: 2.6 ≤ x 1 ≤ 3.6 (45) 2.6\leq x_1\leq3.6\tag{45} 2.6x13.6(45) 0.7 ≤ x 2 ≤ 0.8 (46) 0.7\leq x_2\leq0.8\tag{46} 0.7x20.8(46) 17 ≤ x 3 ≤ 28 (47) 17\leq x_3\leq28\tag{47} 17x328(47) 7.3 ≤ x 4 ≤ 8.3 (48) 7.3\leq x_4\leq8.3\tag{48} 7.3x48.3(48) 7.8 ≤ x 5 ≤ 8.3 (49) 7.8\leq x_5\leq8.3\tag{49} 7.8x58.3(49) 2.9 ≤ x 6 ≤ 3.9 (50) 2.9\leq x_6\leq3.9\tag{50} 2.9x63.9(50) 5.0 ≤ x 7 ≤ 5.5 (51) 5.0\leq x_7\leq5.5\tag{51} 5.0x75.5(51)

六、管柱设计问题

在这个问题中,目标是使用最小的成本来获得一个均匀的管柱,该柱可以承受 P = 2500 kgf P=2500\text{kgf} P=2500kgf 的压缩载荷。平均直径 d d d和厚度 t t t [ 2 , 14 ] [2,14] [2,14] [ 0.2 , 0.8 ] [0.2,0.8] [0.2,0.8]的范围内变化。柱组成材料中的特征参数设置为: 屈服应力 σ y = 500   kgf/cm 2 \sigma_y=500\,\text{kgf/cm}^2 σy=500kgf/cm2、弹性模量 E = 0.85 × 1 0 6   kgf/cm 2 E = 0.85\times10^6\, \text{kgf/cm}^2 E=0.85×106kgf/cm2和密度 ρ = 0.0025   kgf/cm 3 \rho=0.0025\,\text{kgf/cm}^3 ρ=0.0025kgf/cm3。柱子的长度 L L L 250   cm 250\,\text{cm} 250cm,向量 x = ( x 1 , x 2 ) = ( d , t ) \boldsymbol x=(x_1,x_2)=(d,t) x=(x1,x2)=(d,t),数学模型描述如下:
目标函数: f ( x ) = 9.82 d t + 2 d (52) f(\boldsymbol x)=9.82dt+2d\tag{52} f(x)=9.82dt+2d(52)约束条件: g 1 ( x ) = P π d t σ y − 1 ≤ 0 (53) g_1(\boldsymbol x)=\frac{P}{\pi dt\sigma_y}-1\leq0\tag{53} g1(x)=πdtσyP10(53) g 2 ( x ) = 8 P L 2 π 3 E d t ( d 2 + t 2 ) − 1 ≤ 0 (54) g_2(\boldsymbol x)=\frac{8PL^2}{\pi^3Edt(d^2+t^2)}-1\leq0\tag{54} g2(x)=π3Edt(d2+t2)8PL210(54) g 3 ( x ) = 2.0 d − 1 ≤ 0 (55) g_3(\boldsymbol x)=\frac{2.0}{d}-1\leq0\tag{55} g3(x)=d2.010(55) g 4 ( x ) = d 14 − 1 ≤ 0 (56) g_4(\boldsymbol x)=\frac{d}{14}-1\leq0\tag{56} g4(x)=14d10(56) g 5 ( x ) = 0.2 t − 1 ≤ 0 (57) g_5(\boldsymbol x)=\frac{0.2}{t}-1\leq0\tag{57} g5(x)=t0.210(57) g 6 ( x ) = t 0.8 − 1 ≤ 0 (58) g_6(\boldsymbol x)=\frac{t}{0.8}-1\leq0\tag{58} g6(x)=0.8t10(58)边界约束: 2 ≤ d ≤ 14 (59) 2\leq d\leq 14\tag{59} 2d14(59) 0.2 ≤ t ≤ 0.8 (60) 0.2\leq t\leq0.8\tag{60} 0.2t0.8(60)

七、工字梁设计问题

在这个问题中,目标是找到在满足预设载荷下横截面积和应力约束的同时,使工字梁的垂直挠度最小化的最佳变量。向量 x = ( x 1 , x 2 , x 3 , x 4 ) = ( h , b , t w , t f ) \boldsymbol x=(x_1,x_2,x_3,x_4)=(h,b,t_w,t_f) x=(x1,x2,x3,x4)=(h,b,tw,tf),数学模型描述如下:
目标函数: f ( x ) = 5000 t w ( h − 2 t f ) 3 12 + b t f 3 6 + 2 b t f ( h − t f 2 ) 2 (61) f(\boldsymbol x)=\frac{5000}{\frac{t_w(h-2t_f)^3}{12}+\frac{bt_f^3}{6}+2bt_f\left(\frac{h-t_f}{2}\right)^2}\tag{61} f(x)=12tw(h2tf)3+6btf3+2btf(2htf)25000(61)约束条件: g 1 ( x ) = 2 b t w + t w ( h − 2 t f ) − 300 ≤ 0 (62) g_1(\boldsymbol x)=2bt_w+t_w(h-2t_f)-300\leq0\tag{62} g1(x)=2btw+tw(h2tf)3000(62) g 2 ( x ) = 18 h × 1 0 4 t w ( h − 2 t f ) 3 + 2 b t w ( 4 t f 2 + 3 h ( h − 2 t f ) ) (63) g_2(\boldsymbol x)=\frac{18h\times10^4}{t_w(h-2t_f)^3+2bt_w(4t_f^2+3h(h-2t_f))}\tag{63} g2(x)=tw(h2tf)3+2btw(4tf2+3h(h2tf))18h×104(63)边界约束: 10 ≤ h ≤ 80 (64) 10\leq h\leq 80\tag{64} 10h80(64) 10 ≤ b ≤ 50 (65) 10\leq b\leq 50\tag{65} 10b50(65) 0.9 ≤ t w ≤ 5 (66) 0.9\leq t_w\leq 5\tag{66} 0.9tw5(66) 0.9 ≤ t f ≤ 5 (67) 0.9\leq t_f\leq 5\tag{67} 0.9tf5(67)

八、三杆桁架设计问题

该问题使体积最小化,同时满足桁架构件每侧的应力约束。该问题的变量为 x = ( x 1 , x 2 ) = ( A 1 , A 2 ) \boldsymbol x=(x_1,x_2)=(A_1,A_2) x=(x1,x2)=(A1,A2),其数学模型为:
目标函数: f ( x ) = ( 2 2 A 1 + A 2 ) × l (68) f(\boldsymbol x)=(2\sqrt2A_1+A_2)\times l\tag{68} f(x)=(22 A1+A2)×l(68)约束条件: g 1 ( x ) = 2 A 1 + A 2 2 A 1 2 + 2 A 1 A 2 P − σ ≤ 0 (69) g_1(\boldsymbol x)=\frac{\sqrt2A_1+A_2}{\sqrt2 A_1^2+2A_1A_2}P-\sigma\leq0\tag{69} g1(x)=2 A12+2A1A22 A1+A2Pσ0(69) g 2 ( x ) = A 2 2 A 1 2 + 2 A 1 A 2 P − σ ≤ 0 (70) g_2(\boldsymbol x)=\frac{A_2}{\sqrt2 A_1^2+2A_1A_2}P-\sigma\leq0\tag{70} g2(x)=2 A12+2A1A2A2Pσ0(70) g 3 ( x ) = 1 A 1 + 2 A 2 P − σ ≤ 0 (71) g_3(\boldsymbol x)=\frac1{A_1+\sqrt2A_2}P-\sigma\leq0\tag{71} g3(x)=A1+2 A21Pσ0(71)边界约束: 0 ≤ A 1 , A 2 ≤ 1 (72) 0\leq A_1,A_2\leq1\tag{72} 0A1,A21(72)

九、悬臂梁设计问题

该问题是一个结构工程设计问题,与方形截面悬臂梁的重量优化有关。悬臂梁一端刚性支撑,垂直力作用在悬臂的自由节点上。梁由5个具有恒定厚度的空心方形块组成,其高度(或宽度)为决策变量,且厚度固定(此处为 2 / 3 2/3 2/3)。这一问题可以用以下数学等式表示:
目标函数: f ( X ) = 0.0624 ( x 1 + x 2 + x 3 + x 4 + x 5 ) (73) f(X)=0.0624(x_1+x_2+x_3+x_4+x_5)\tag{73} f(X)=0.0624(x1+x2+x3+x4+x5)(73)约束条件: g ( X ) = 61 x 1 3 + 37 x 2 3 + 19 x 3 3 + 7 x 4 3 + 1 x 5 3 − 1 ≤ 0 (74) g(X)=\frac{61}{x_1^3}+\frac{37}{x_2^3}+\frac{19}{x_3^3}+\frac{7}{x_4^3}+\frac{1}{x_5^3}-1\leq0\tag{74} g(X)=x1361+x2337+x3319+x437+x53110(74)边界约束: 0.01 ≤ x i ≤ 100 ,    i = 1 , 2 ⋯   , 5 (75) 0.01\leq x_i\leq100,\,\,i=1,2\cdots,5\tag{75} 0.01xi100,i=1,2,5(75)

十、活塞杆优化问题

该问题的主要目的是通过将活塞杆从0°提升至45°时的油量降至最低,来定位活塞杆部件 H ( = x 1 ) , B ( = x 2 ) , D ( = x 3 ) H(=x_1),B(=x_2),D(=x_3) H(=x1),B(=x2),D(=x3) X ( = x 4 ) X(=x_4) X(=x4)。该问题的数学公式如下所示:
目标函数: f ( X ) = 1 4 π x 3 2 ( L 2 − L 1 ) (76) f(X)=\frac14\pi x_3^2(L_2-L_1)\tag{76} f(X)=41πx32(L2L1)(76)约束条件: g 1 ( X ) = Q L cos ⁡ θ − R × F ≤ 0 (77) g_1(X)=QL\cos\theta-R\times F\leq0\tag{77} g1(X)=QLcosθR×F0(77) g 2 ( X ) = Q ( L − x 4 ) − M max ⁡ ≤ 0 (78) g_2(X)=Q(L-x_4)-M_{\max}\leq0\tag{78} g2(X)=Q(Lx4)Mmax0(78) g 3 ( X ) = 1.2 ( L 2 − L 1 ) − L 1 ≤ 0 (79) g_3(X)=1.2(L_2-L_1)-L_1\leq0\tag{79} g3(X)=1.2(L2L1)L10(79) g 4 ( X ) = x 3 2 − x 2 ≤ 0 (80) g_4(X)=\frac{x_3}2-x_2\leq0\tag{80} g4(X)=2x3x20(80)其中: R = ∣ − x 4 ( x 4 sin ⁡ θ + x 1 ) + x 1 ( x 2 − x 4 cos ⁡ θ ) ∣ ( x 4 − x 2 ) 2 + x 1 2 (81) R=\frac{|-x_4(x_4\sin\theta+x_1)+x_1(x_2-x_4\cos\theta)|}{\sqrt{(x_4-x_2)^2+x_1^2}}\tag{81} R=(x4x2)2+x12 x4(x4sinθ+x1)+x1(x2x4cosθ)(81) F = π P x 3 2 4 (83) F=\frac{\pi Px_3^2}{4}\tag{83} F=4πPx32(83) L 1 = ( x 4 − x 2 ) 2 + x 1 2 (84) L_1=\sqrt{(x_4-x_2)^2+x_1^2}\tag{84} L1=(x4x2)2+x12 (84) L 2 = ( x 4 sin ⁡ θ + x 1 ) 2 + ( x 2 − x 4 cos ⁡ θ ) 2 (85) L_2=\sqrt{(x_4\sin\theta+x_1)^2+(x_2-x_4\cos\theta)^2}\tag{85} L2=(x4sinθ+x1)2+(x2x4cosθ)2 (85) θ = 45 ° (86) \theta=45°\tag{86} θ=45°(86) Q = 10000   lbs (87) Q=10000\,\text{lbs}\tag{87} Q=10000lbs(87) L = 240   in (88) L=240\,\text{in}\tag{88} L=240in(88) M max ⁡ = 1.8 × 1 0 6   lbs   in (89) M_{\max}=1.8\times10^6\,\text{lbs}\,\text{in}\tag{89} Mmax=1.8×106lbsin(89) P = 1500   psi (90) P=1500\,\text{psi}\tag{90} P=1500psi(90)边界约束: 0.05 ≤ x 1 , x 2 , x 4 ≤ 500 (91) 0.05\leq x_1,x_2,x_4\leq500\tag{91} 0.05x1,x2,x4500(91) 0.05 ≤ x 3 ≤ 200 (92) 0.05\leq x_3\leq200\tag{92} 0.05x3200(92)

十一、槽形舱壁设计问题

该问题旨在使化学品罐车波槽形舱壁的重量最小化,其中设计变量为宽度( x 1 x_1 x1)、深度( x 2 x_2 x2)、长度( x 3 x_3 x3)和板厚( x 4 x_4 x4)。该优化问题的数学模型如下所示:
目标函数: f ( X ) = 5.885 x 4 ( x 1 + x 3 ) x 1 + ∣ x 3 2 − x 2 2 ∣ (93) f(X)=\frac{5.885x_4(x_1+x_3)}{x_1+\sqrt{|x_3^2-x_2^2|}}\tag{93} f(X)=x1+x32x22 5.885x4(x1+x3)(93)约束条件: g 1 ( X ) = − x 4 x 2 ( 0.4 x 1 + x 3 6 ) + 8.94 ( x 1 + ∣ x 3 2 − x 2 2 ∣ ) ≤ 0 (94) g_1(X)=-x_4x_2\left(0.4x_1+\frac{x_3}{6}\right)+8.94\left(x_1+\sqrt{|x_3^2-x_2^2|}\right)\leq0\tag{94} g1(X)=x4x2(0.4x1+6x3)+8.94(x1+x32x22 )0(94) g 2 ( X ) = − x 4 x 2 2 ( 0.2 x 1 + x 3 12 ) + 2.2 ( 8.94 ( x 1 + ∣ x 3 2 − x 2 2 ∣ ) ) 4 / 3 ≤ 0 (95) g_2(X)=-x_4x_2^2\left(0.2x_1+\frac {x_3}{12}\right)+2.2\left(8.94\left(x_1+\sqrt{|x_3^2-x_2^2|}\right)\right)^{4/3}\leq0\tag{95} g2(X)=x4x22(0.2x1+12x3)+2.2(8.94(x1+x32x22 ))4/30(95) g 3 ( X ) = − x 4 + 0.0156 x 1 + 0.15 ≤ 0 (96) g_3(X)=-x_4+0.0156x_1+0.15\leq0\tag{96} g3(X)=x4+0.0156x1+0.150(96) g 4 ( X ) = − x 4 + 0.0156 x 3 + 0.15 ≤ 0 (97) g_4(X)=-x_4+0.0156x_3+0.15\leq0\tag{97} g4(X)=x4+0.0156x3+0.150(97) g 5 ( X ) = − x 4 + 1.05 ≤ 0 (98) g_5(X)=-x_4+1.05\leq0\tag{98} g5(X)=x4+1.050(98) g 6 ( X ) = − x 3 + x 2 ≤ 0 (99) g_6(X)=-x_3+x_2\leq0\tag{99} g6(X)=x3+x20(99)边界约束: 0 ≤ x 1 , x 2 , x 3 ≤ 100 (100) 0\leq x_1,x_2,x_3\leq100\tag{100} 0x1,x2,x3100(100) 0 ≤ x 4 ≤ 5 (101) 0\leq x_4\leq5\tag{101} 0x45(101)

十二、汽车侧面碰撞设计问题

汽车会受到侧面碰撞,该问题的目的是使用9个影响参数最小化车门重量,包括B柱内板的厚度( = x 1 =x_1 =x1)、B柱加强件( = x 2 =x_2 =x2)、地板内侧的厚度( = x 3 =x_3 =x3),横梁( = x 4 =x_4 =x4)、门梁( = x 5 =x_5 =x5)、门带线加强件( = x 6 =x_6 =x6)、车顶纵梁( = x 7 =x_7 =x7),B柱内侧( = x 8 =x_8 =x8)、地板内侧( = x 9 =x_9 =x9)、护栏高度( = x 10 =x_{10} =x10)和碰撞位置( = x 11 =x_{11} =x11)的材料。优化的问题公式如下:
目标函数: f ( X ) = 1.98 + 4.90 x 1 + 6.67 x 2 + 6.98 x 3 + 4.01 x 4 + 1.78 x 5 + 2.73 x 7 (102) f(X)=1.98 + 4.90x_1 + 6.67x_2 + 6.98x_3 + 4.01x_4 + 1.78x_5 + 2.73x_7\tag{102} f(X)=1.98+4.90x1+6.67x2+6.98x3+4.01x4+1.78x5+2.73x7(102)约束条件: g 1 ( X ) = 1.16 − 0.3717 x 2 x 4 − 0.00931 x 2 x 10 − 0.484 x 3 x 9 + 0.01343 x 6 x 10 − 1 ≤ 0 (103) g_1(X)=1.16-0.3717x_2x_4− 0.00931x_2x_{10}− 0.484x_3x_9 + 0.01343x_6x_{10}-1\leq0\tag{103} g1(X)=1.160.3717x2x40.00931x2x100.484x3x9+0.01343x6x1010(103) g 2 ( X ) = 46.36 − 9.9 x 2 − 12.9 x 1 x 2 + 0.1107 x 3 x 10 − 32 ≤ 0 (104) g_2(X)=46.36− 9.9x_2− 12.9x_1x_2 + 0.1107x_3x_{10}− 32\leq0\tag{104} g2(X)=46.369.9x212.9x1x2+0.1107x3x10320(104) g 3 ( X ) = 33.86 + 2.95 x 3 + 0.1792 x 3 − 5.057 x 1 x 2 − 11.0 x 2 x 8 − 0.0215 x 5 x 10 − 9.98 x 7 x 8 + 22.0 x 8 x 9 − 32 ≤ 0 (105) g_3(X)=33.86 + 2.95x_3 + 0.1792x_3− 5.057x_1x_2− 11.0x_2x_8− 0.0215x_5x_{10}− 9.98x_7x_8 + 22.0x_8x_9− 32\leq0\tag{105} g3(X)=33.86+2.95x3+0.1792x35.057x1x211.0x2x80.0215x5x109.98x7x8+22.0x8x9320(105) g 4 ( X ) = 28.98 + 3.818 x 3 − 4.2 x 1 x 2 + 0.0207 x 5 x 10 + 6.63 x 6 x 9 − 7.7 x 7 x 8 + 0.32 x 9 x 10 − 32 ≤ 0 (106) g_4(X)=28.98 + 3.818x_3− 4.2x_1x_2 + 0.0207x_5x_{10} + 6.63x_6x_9− 7.7x_7x_8 + 0.32x_9x_{10}− 32\leq0\tag{106} g4(X)=28.98+3.818x34.2x1x2+0.0207x5x10+6.63x6x97.7x7x8+0.32x9x10320(106) g 5 ( X ) = 0.261 − 0.0159 x 1 x 2 − 0.188 x 1 x 8 − 0.019 x 2 x 7 + 0.0144 x 3 x 5 + 0.0008757 x 5 x 10 + 0.08045 x 6 x 9 + 0.00139 x 8 x 11 + 0.00001575 x 10 x 11 − 0.32 ≤ 0 (107) g_5(X)= 0.261−0.0159x_1x_2− 0.188x_1x_8− 0.019x_2x_7 + 0.0144x_3x_5 + 0.0008757x_5x_{10} + 0.08045x_6x_9\newline+ 0.00139x_8x_{11} + 0.00001575x_{10}x_{11}− 0.32\leq0\tag{107} g5(X)=0.2610.0159x1x20.188x1x80.019x2x7+0.0144x3x5+0.0008757x5x10+0.08045x6x9+0.00139x8x11+0.00001575x10x110.320(107) g 6 ( X ) = 0.214 + 0.00817 x 5 − 0.131 x 1 x 8 − 0.0704 x 1 x 9 + 0.03099 x 2 x 6 − 0.018 x 2 x 7 + 0.0208 x 3 x 8 + 0.121 x 3 x 9 − 0.00364 x 5 x 6 + 0.0007715 x 5 x 10 − 0.0005354 x 6 x 10 + 0.00121 x 8 x 11 + 0.00184 x 9 x 10 − 0.02 x 2 2 − 0.32 ≤ 0 (108) g_6(X)=0.214 + 0.00817x_5− 0.131x_1x_8− 0.0704x_1x_9 + 0.03099x_2x_6− 0.018x_2x_7 + 0.0208x_3x_8\newline + 0.121x_3x_9− 0.00364x_5x_6+ 0.0007715x_5x_{10}− 0.0005354x_6x_{10}\newline + 0.00121x_8x_{11} + 0.00184x_9x_{10}− 0.02x_{2}^2− 0.32\leq0\tag{108} g6(X)=0.214+0.00817x50.131x1x80.0704x1x9+0.03099x2x60.018x2x7+0.0208x3x8+0.121x3x90.00364x5x6+0.0007715x5x100.0005354x6x10+0.00121x8x11+0.00184x9x100.02x220.320(108) g 7 ( X ) = 0.74 − 0.61 x 2 − 0.163 x 3 x 8 + 0.001232 x 3 x 10 − 0.166 x 7 x 9 + 0.227 x 2 2 − 0.32 ≤ 0 (109) g_7(X)=0.74− 0.61x_2− 0.163x_3x_8 + 0.001232x_3x_{10}− 0.166x_7x_9 + 0.227x_2^2− 0.32\leq0\tag{109} g7(X)=0.740.61x20.163x3x8+0.001232x3x100.166x7x9+0.227x220.320(109) g 8 ( X ) = 4.72 − 0.5 x 4 − 0.19 x 2 x 3 − 0.0122 x 4 x 10 + 0.009325 x 6 x 10 + 0.000191 x 11 2 − 4 ≤ 0 (110) g_8(X)=4.72− 0.5x_4− 0.19x_2x_3− 0.0122x_4x_{10} + 0.009325x_6x_{10} + 0.000191x_{11}^2-4\leq0\tag{110} g8(X)=4.720.5x40.19x2x30.0122x4x10+0.009325x6x10+0.000191x11240(110) g 9 ( X ) = 10.58 − 0.674 x 1 x 2 − 1.95 x 2 x 8 + 0.02054 x 3 x 10 − 0.0198 x 4 x 10 + 0.028 x 6 x 10 − 9.9 ≤ 0 (111) g_9(X)=10.58− 0.674x_1x_2− 1.95x_2x_8 + 0.02054x_3x_{10}− 0.0198x_4x_{10} + 0.028x_6x_{10}− 9.9\leq0\tag{111} g9(X)=10.580.674x1x21.95x2x8+0.02054x3x100.0198x4x10+0.028x6x109.90(111) g 10 ( X ) = 16.45 − 0.489 x 3 x 7 − 0.843 x 5 x 6 + 0.0432 x 9 x 10 − 0.0556 x 9 x 11 − 0.000786 x 11 2 − 15.7 ≤ 0 (112) g_{10}(X)=16.45− 0.489x_3x_7− 0.843x_5x_6 + 0.0432x_9x_{10}− 0.0556x_9x_{11}− 0.000786x_{11}^2− 15.7\leq0\tag{112} g10(X)=16.450.489x3x70.843x5x6+0.0432x9x100.0556x9x110.000786x11215.70(112)边界约束: 0.5 ≤ x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 ≤ 1.5 (113) 0.5\leq x_1,x_2,x_3,x_4,x_5,x_6,x_7\leq1.5\tag{113} 0.5x1,x2,x3,x4,x5,x6,x71.5(113) 0 ≤ x 8 , x 9 ≤ 1 (114) 0\leq x_8,x_9\leq1\tag{114} 0x8,x91(114) − 30 ≤ x 10 , x 11 ≤ 30 (115) -30\leq x_{10},x_{11}\leq30\tag{115} 30x10,x1130(115)

十三、钢筋混凝土梁设计问题

假定钢筋混凝土梁的跨度为 30   ft 30\,\text{ft} 30ft,并承受 2000   lbf 2000\,\text{lbf} 2000lbf的活荷载和 1000   lbf 1000\,\text{lbf} 1000lbf的恒荷载,包括梁的重量。混凝土抗压强度( σ c \sigma_c σc)为 5   ksi 5\,\text{ksi} 5ksi、钢筋屈服应力( σ y \sigma_y σy)为 50   ksi 50\,\text{ksi} 50ksi。混凝土成本为$0.02/in2/linear ft,钢材成本为$1.0/in2/linear ft。为了使结构的总成本最小化,必须确定钢筋的面积 A s ( = x 1 ) A_s(=x_1) As(=x1)、梁的宽度 b ( = x 2 ) b(=x_2) b(=x2)以及梁的深度 h ( = x 3 ) h(=x_3) h(=x3),梁的深宽比限制为小于或等于4。该优化问题可以表示为:
目标函数: f ( X ) = 2.9 x 1 + 0.6 x 2 x 3 (116) f(X)=2.9x_1+0.6x_2x_3\tag{116} f(X)=2.9x1+0.6x2x3(116)约束条件: g 1 ( X ) = x 2 x 3 − 4 ≤ 0 (117) g_1(X)=\frac{x_2}{x_3}-4\leq0\tag{117} g1(X)=x3x240(117) g 2 ( X ) = 180 + 7.375 x 1 2 x 3 − x 1 x 2 ≤ 0 (118) g_2(X)=180+7.375\frac{x_1^2}{x_3}-x_1x_2\leq0\tag{118} g2(X)=180+7.375x3x12x1x20(118)边界约束: 0 ≤ x 1 , x 2 ≤ 1 (119) 0\leq x_1,x_2\leq1\tag{119} 0x1,x21(119) 5 ≤ x 3 ≤ 10 (120) 5\leq x_3\leq10\tag{120} 5x310(120)   \, 本文利用罚函数的方法来处理不等式约束,具体方法为将约束条件的违约量作为函数的一部分,该目标函数对应的罚函数如式(121)所示: J a u g ( x ) = f ( x ) + ∑ i = 1 n k i ⋅ b i (121) J_{aug}(x)=f(x)+\sum_{i=1}^nk_i\cdot b_i\tag{121} Jaug(x)=f(x)+i=1nkibi(121)其中, k i k_i ki为罚函数系数, b i b_i bi可由式(32)计算所得: b i = { 0     i f    x i ≤ 0 x i 2 i f    x i > 0     i = 1 , 2 , ⋯   , n (122) b_i=\begin{dcases}0\quad\,\,\, if\,\,x_i≤0\\x_i^2\quad if\,\,x_i>0\end{dcases}\tag{122}\,\,\,i=1,2,\cdots,n bi={0ifxi0xi2ifxi>0i=1,2,,n(122)

十四、下载链接

https://download.csdn.net/download/weixin_43821559/85494447

十五、参考文献

[1] 吴擎, 徐惟罡, 张春江. 基于师生交流机制的改进类电磁机制算法[J]. 计算机集成制造系统, 2020, 26(4): 1033-1042.
[2] 王瑞花. 焊接条优化设计问题的混沌人工蜂群算法求解[J]. 工业工程与管理, 2015, 20(2): 90-95.
[3] Rather, S.A., Bala, P.S… Swarm-based chaotic gravitational search algorithm for solving mechanical engineering design problems[J]. World Journal of Engineering, 2020, 17(1): 97-114.
[4] Hadi Bayzidi, Siamak Talatahari, Meysam Saraee, et al. Social Network Search for Solving Engineering Optimization Problems[J]. Computational Intelligence and Neuroscience, 2021, 2021: 8548639.

  • 4
    点赞
  • 37
    收藏
  • 打赏
    打赏
  • 10
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:鲸 设计师:meimeiellie 返回首页
评论 10

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值