无线传感器网络
文章平均质量分 95
分享无线传感器网络相关知识
心️升明月
无小号~~
代码请私信博主交流!!!
展开
-
基于人工兔优化算法的函数寻优和工程优化
文献[1]提出了一种新的生物启发的元启发式算法——人工兔子优化(Artificial rabbits optimization, ARO)算法,并进行了综合测试。ARO算法的灵感来源于自然界中兔子的生存策略,包括绕道觅食和随机躲藏。ARO利用真实兔子的觅食和隐藏策略,通过能量收缩在两种策略之间转换。对数学模型进行了描述,并对所提出的ARO进行了概述。如上所述,兔子觅食时,总是寻找远的,而忽略了近处的。它们只在其他区域随机吃草,而不是在自己的区域,把这种觅食行为称为绕道觅食。在ARO中,假设种群中的每只兔子原创 2022-08-29 12:05:43 · 1857 阅读 · 0 评论 -
基于社交网络搜索算法的WSN覆盖优化和工程优化
文章目录一、理论基础1、社交网络搜索算法1.1 情绪1:模仿1.2 情绪2:对话1.3 情绪3:争论1.4 情绪4:创新2、SNS算法流程图二、仿真实验与结果分析1、WSN覆盖优化2、工程优化三、参考文献一、理论基础1、社交网络搜索算法社交网络搜索(Social Network Search,SNS)算法SIAMAK TALATAHARI等人于2021年提出的一种新的求解优化问题的元启发式算法,该算法主要模拟了用户表达意见时的情绪,即模仿、对话、争论和创新,这些是人们在社交网络中的真实行为,这些行为被原创 2022-04-18 14:16:05 · 2412 阅读 · 0 评论 -
基于流向算法的WSN覆盖优化
文章目录一、理论基础1、流向算法2、FDA算法流程图二、WSN覆盖优化仿真1、二维覆盖优化2、三维覆盖优化三、参考文献一、理论基础1、流向算法流向算法(Flow Direction Algorithm, FDA)模拟了流向排水池中具有最低高度的出口点的水流方向,是一种基于物理的优化算法。FDA算法在将降雨转化为径流后,确定流域中的流向。该算法首先在搜索空间中创建初始种群。然后,气流流向海拔较低的位置,以达到最佳答案或最低海拔出口点。该算法基于以下假设执行:每个流都有一个位置和一个高度。每个流原创 2022-04-04 22:01:54 · 3058 阅读 · 3 评论 -
基于回溯搜索优化算法的WSN覆盖优化
文章目录一、理论基础1、回溯搜索优化算法(1)种群初始化(2)选择Ⅰ(3)变异(4)交叉(5)选择Ⅱ2、BSA算法伪代码二、仿真实验与结果分析三、参考文献一、理论基础1、回溯搜索优化算法回溯搜索优化算法(Backtracking Search Optimization Algorithm, BSA)是Civicioglu在2013年提出的一种求解优化问题的进化算法。该算法结构简单,仅有一个控制参数,使其受初始控制参数影响很小,且在变异策略中充分考虑历史种群的影响,并采用了新型的交叉方式,使算法具有较强原创 2022-03-30 17:11:22 · 2281 阅读 · 5 评论 -
基于蜉蝣优化算法的函数寻优算法
文章目录一、理论基础1、蜉蝣优化算法(1)雄性蜉蝣的更新(2)雌性蜉蝣的更新(3)蜉蝣的交配过程2、MA算法伪代码二、仿真实验与结果分析1、函数测试与数值分析2、WSN三维覆盖优化三、参考文献一、理论基础1、蜉蝣优化算法蜉蝣优化算法(Mayfly optimization algorithm, MA)是2020年由希腊学者Konstantinos等人提出的新的仿真优化算法,用于解决复杂的函数优化问题。MA是由雌性蜉蝣群体和雄性蜉蝣群体组成,受蜉蝣的交配行为启发。交配行为中,雄性蜉蝣的最优个体和雌性蜉原创 2022-02-15 13:45:23 · 3557 阅读 · 3 评论 -
基于藤壶交配优化算法的函数寻优算法
文章目录一、理论基础1、藤壶交配优化算法1.1 哈迪-温伯格(Hardy-Weinberg)法则1.2 BMO1.2.1 初始化1.2.2 选择过程1.2.3 繁殖2、BMO算法伪代码二、仿真实验与结果分析1、函数测试与数值分析2、WSN覆盖优化三、参考文献一、理论基础1、藤壶交配优化算法本文提出了一种新的仿生优化算法,即藤壶交配优化(Barnacles mating optimizer, BMO)算法来解决优化问题,该算法模拟自然界中藤壶的交配行为来解决优化问题。1.1 哈迪-温伯格(Hardy-原创 2022-02-08 10:36:00 · 1670 阅读 · 0 评论 -
基于莱维飞行分布算法的函数寻优算法
文章目录一、理论基础1、莱维飞行分布算法2、LFD算法流程图二、仿真实验与结果分析1、函数测试与数值分析2、WSN覆盖优化三、参考文献一、理论基础1、莱维飞行分布算法在本文中,提出了一种新的基于莱维飞行的元启发式算法,称为莱维飞行飞行分布(Lévy flight distribution, LFD),用于求解实际优化问题。LFD算法的灵感来自莱维飞行随机游走,用于探索未知的大搜索空间(例如,无线传感器网络(Wireless sensor network, WSN))。为该算法的数学模型建模的仿真环境原创 2022-01-21 12:27:49 · 5661 阅读 · 0 评论 -
基于瞬态搜索优化算法的函数寻优及工程优化应用
文章目录一、理论基础1、瞬态搜索优化算法2、TSO算法伪代码二、仿真实验与分析1、函数测试与数值分析2、求解压缩弹簧设计优化问题3、WSN三维覆盖优化三、参考文献一、理论基础1、瞬态搜索优化算法瞬态搜索优化(Transient search optimization, TSO)算法是一种新的基于物理的元启发式优化算法,该算法受开关电路瞬态行为的启发,开关电路包括电感和电容等存储元件。在本节中,TSO算法建模为:1)初始化搜索空间上下限之间的搜索代理;2)搜索最佳解决方案(探索);3)达到稳态或原创 2022-01-10 16:29:57 · 1257 阅读 · 2 评论 -
基于秃鹰搜索算法的无线传感器网络三维覆盖优化
文章目录一、理论基础1、选择搜索空间2、搜索空间猎物(探索)3、俯冲捕获猎物(开发)4、BES算法伪代码二、仿真实验与结果分析1、函数测试与数值分析2、WSN三维覆盖优化三、参考文献一、理论基础秃鹰搜索(Bald eagle search, BES)算法是马来西亚学者Alsattar提出的一种新型元启发式算法,该算法具有较强的全局搜索能力,能够有效地解决各类复杂数值优化问题。BES算法以秃鹰捕食猎物的行为进行模拟,将其分为选择搜索空间、搜索空间猎物和俯冲捕获猎物三个阶段,数学模型如下所示:1、选择搜原创 2022-01-03 11:57:09 · 2523 阅读 · 4 评论 -
基于均衡优化算法的无线传感器网络三维覆盖优化
文章目录一、理论基础1、种群初始化2、均衡池3、浓度更新4、EO算法伪代码二、仿真实验与分析1、函数测试与数值分析2、WSN三维覆盖优化三、参考文献一、理论基础均衡优化(Equilibrium Optimizer, EO)算法是Faramarzia等人2019年提出的一种新型启发式算法,其原理是控制体积-质量平衡模型中,粒子根据均衡候选解进行浓度更新,最终达到平衡状态,主要为种群初始化、均衡池及浓度更新三个阶段。1、种群初始化与大多数元启发是算法一样,标准EO算法采用随机方式生成初始种群:C→i=L原创 2021-12-20 12:19:58 · 3075 阅读 · 0 评论 -
基于梯度优化算法的无线传感器网络三维覆盖优化
文章目录一、理论基础(1)初始化(2)梯度搜索规则(GSR)(3)局部逃逸操作(LEO)(4)GBO算法伪代码二、仿真实验与分析一、理论基础梯度优化算法(Gradient-based optimizer, GBO)受基于梯度的牛顿方法启发,主要使用两种算子:梯度搜索规则(Gradient search rule, GSR)和局部逃逸算子(Local escaping operator, LEO)以及一组向量来探索搜索空间。GSR采用基于梯度的方法来增强搜索趋势并加快收敛速度,从而在搜索空间中获得更好的位原创 2021-12-17 20:02:53 · 2129 阅读 · 4 评论 -
基于供需优化算法的函数寻优及工程优化应用
文章目录一、理论基础1、供需优化算法(1)SDO算法初始化(2)商品均衡数量与均衡价格(3)供给函数和需求函数2、SDO算法伪代码二、仿真实验与分析1、函数测试与数值分析2、求解焊接梁设计优化问题3、WSN覆盖优化三、参考文献一、理论基础1、供需优化算法供需优化(Supply-demand-based optimization, SDO)算法是Zhao等于2019年受经济学供需机制的启发而提出的一种新型元启发式优化算法。该算法在数学上模拟了消费者的需求关系和生产者的供给关系,通过将供求机制之稳定模式和原创 2021-12-06 12:21:50 · 1710 阅读 · 0 评论 -
基于人工生态系统优化算法的函数寻优及工程优化应用
文章目录一、理论基础1、人工生态系统优化算法(1)生产者(2)消费者(3)分解者2、AEO算法伪代码二、仿真实验与分析1、函数测试与数值分析2、求解压力容器设计优化问题3、WSN覆盖优化三、参考文献一、理论基础1、人工生态系统优化算法人工生态系统优化(Artificial ecosystem-based optimization, AEO)算法是Zhao等于2019年通过模拟地球生态系统中能量流动而提出一种新型元启发式优化算法,该算法通过生产算子、消费算子和分解算子对生态系统中的生产、消费和分解行为进原创 2021-11-29 12:56:24 · 2115 阅读 · 1 评论 -
基于人工蜂鸟算法的函数寻优及工程优化应用
文章目录一、理论基础1、人工蜂鸟算法(1)初始化(2)引导觅食(3)区域性觅食(4)迁徙觅食2、AHA伪代码二、仿真实验与分析(1)函数测试与数值分析2、求解压缩弹簧设计优化问题3、WSN覆盖优化三、参考文献一、理论基础1、人工蜂鸟算法人工蜂鸟算法(Artificial hummingbird algorithm, AHA)模拟了自然界中蜂鸟的特殊飞行技能和智能觅食策略。建立了三种用于觅食策略的飞行技能模型,包括轴向飞行、对角飞行和全向飞行。此外,还实现了引导觅食、区域性觅食和迁徙觅食,并构建了访问表原创 2021-11-22 13:02:15 · 3374 阅读 · 0 评论 -
基于缎蓝园丁鸟优化算法的无线传感器网络覆盖优化
文章目录一、理论基础1、节点覆盖模型2、缎蓝园丁鸟优化算法3、SBO算法伪代码二、仿真实验与分析三、参考文献一、理论基础1、节点覆盖模型本文采取0/1覆盖模型,具体描述请参考这里。2、缎蓝园丁鸟优化算法在缎蓝园丁鸟优化(Satin Bowerbird Optimizer, SBO)算法中,成年雄性园丁鸟在交配季节开始在自己的区域上用不同的材料建造凉亭。它们利用的各种各样的材料(如鲜花、水果)以及戏剧性的姿态,都是吸引雌性园丁鸟的变量。成年雌性园丁鸟由于凉亭的美丽和戏剧性的姿态,被吸引到凉亭。值得注原创 2021-11-15 10:39:42 · 2157 阅读 · 1 评论 -
基于郊狼优化算法的无线传感器网络覆盖优化和工程设计优化
文章目录一、理论基础1、郊狼优化算法2、COA算法流程图二、仿真实验与分析1、WSN覆盖优化(1)节点覆盖模型(2)实验分析2、工程设计优化(1)焊接梁优化设计问题(2)压缩弹簧优化设计问题(3)压力容器优化设计问题三、参考文献一、理论基础1、郊狼优化算法郊狼优化算法(Coyote Optimization Algorithm, COA)通过模拟郊狼生活中成长、生死、繁殖和变迁等社会活动完成仿生优化计算,具体步骤如下:Step 1. COA算法将种群划分为Np∈N∗N_p\in\mathbb N^*原创 2021-10-25 11:57:02 · 1399 阅读 · 0 评论 -
基于非洲秃鹫优化算法的函数寻优算法
文章目录一、理论基础1、非洲秃鹫优化算法(AVOA)1.1 第一阶段:确定任何一组中最好的秃鹫1.2 第二阶段:秃鹫的饥饿率1.3 第三阶段:探索1.4 第四阶段:开发1.4.1 开发(第一阶段)1.4.1.1 食物竞争1.4.1.2 秃鹫的旋转飞行1.4.2 开发(第二阶段)1.4.2.1 几种秃鹫在食物源上的聚集1.4.2.2 对食物的激烈竞争2、AVOA流程图二、仿真实验与分析1、函数测试与数值分析2、AVOA优化WSN覆盖2.1 节点覆盖模型2.2 实验分析三、参考文献一、理论基础本文从非洲秃鹫原创 2021-10-18 12:19:26 · 4730 阅读 · 4 评论 -
基于人工大猩猩部队优化算法的函数寻优算法
文章目录一、理论基础1、人工大猩猩部队优化算法(GTO)1.1 探索阶段1.2 开发阶段1.2.1 跟随银背大猩猩1.2.2 竞争成年雌性2、GTO算法伪代码二、仿真实验与分析1、函数测试与数值分析2、GTO优化WSN覆盖2.1 节点覆盖模型2.2 实验分析三、参考文献一、理论基础本文从大猩猩部队的社会智能出发,提出了一种新的元启发式算法,称为人工大猩猩部队优化算法(Artificial Gorilla Troops Optimizer, GTO)。在这个算法中,大猩猩的群体生活被数学化,新的机制被设计原创 2021-10-11 11:17:02 · 2799 阅读 · 2 评论 -
基于多元宇宙优化算法的无线传感器网络覆盖优化
文章目录一、理论基础1、节点覆盖模型2、多元宇宙优化算法(MVO)3、MVO算法伪代码二、仿真实验与分析三、参考文献一、理论基础1、节点覆盖模型本文采取0/1覆盖模型,具体描述请参考这里。2、多元宇宙优化算法(MVO)多元宇宙优化算法(MVO)主要依据于物理学中多元宇宙理论,模拟的是宇宙种群在白洞、黑洞和虫洞相互作用下的运动行为而构建的数学模型。在该数学模型中,每个宇宙被看作优化问题的一个解,宇宙中每个物体代表解的一个分量,宇宙膨胀率则代表目标函数的适应度值。MVO算法在每次迭代时,首先通过轮盘赌原创 2021-10-04 11:00:33 · 1839 阅读 · 2 评论 -
基于共生生物搜索算法的无线传感器网络覆盖优化
文章目录一、理论基础1、节点覆盖模型2、共生生物搜索算法(SOS)(1)种群初始化(2)互利共生(3)偏利共生(4)寄生二、仿真实验与分析1、函数测试与数值分析2、SOS优化WSN覆盖三、参考文献一、理论基础1、节点覆盖模型本文采取0/1覆盖模型,具体描述请参考这里。2、共生生物搜索算法(SOS)SOS算法模仿生物行为,最终形成“互利共生”、“偏利共生”和“寄生”3个进化阶段,引导个体逐渐进化。SOS算法的关键操作具体如下:(1)种群初始化假设种群数目为NNN,个体的搜索范围上限和下限分别为U原创 2021-09-28 21:54:37 · 1606 阅读 · 0 评论 -
基于蝠鲼觅食优化算法的无线传感器网络覆盖优化
文章目录一、理论基础1、节点覆盖模型2、蝠鲼觅食优化算法(MRFO)(1)链式觅食(2)旋风式觅食(3)筋斗式觅食二、仿真实验与分析1、函数测试与数值分析2、MRFO优化WSN覆盖三、参考文献一、理论基础1、节点覆盖模型本文采取0/1覆盖模型,具体描述请参考这里。2、蝠鲼觅食优化算法(MRFO)蝠鲼觅食策略包括3种:链式觅食、旋风式觅食和筋斗式觅食。(1)链式觅食链式觅食是蝠鲼群头尾相连排列成一条有序的觅食链,除了最前面的个体外,其他个体不仅朝着最优位置前进,还会随着它前面的个体前进,也就是前原创 2021-09-20 12:06:04 · 1373 阅读 · 1 评论 -
基于布谷鸟搜索算法的无线传感器网络覆盖优化
文章目录一、理论基础1、节点覆盖模型2、布谷鸟搜索算法(CS)二、仿真实验与结果分析三、参考文献一、理论基础1、节点覆盖模型本文采取0/1覆盖模型,具体描述请参考这里。2、布谷鸟搜索算法(CS)请参考这里。二、仿真实验与结果分析设监测区域为50m×50m50 m×50 m50m×50m的二维平面,传感器节点个数N=35N=35N=35,其感知半径是Rs=5mR_s=5mRs=5m,通信半径Rc=10mR_c=10mRc=10m,迭代500次。初始部署、CS优化覆盖、CS算法覆盖率进化曲线如原创 2021-08-30 09:14:00 · 1615 阅读 · 8 评论 -
基于海洋捕食者算法的无线传感器网络覆盖优化
文章目录一、理论基础1、节点覆盖模型2、海洋捕食者算法(MPA)(1)初始化阶段(2)MPA优化阶段(3)FADs效应或涡流二、实验仿真与结果分析三、参考文献四、Matlab仿真程序一、理论基础1、节点覆盖模型本文采取0/1覆盖模型,具体描述请参考这里。2、海洋捕食者算法(MPA)海洋捕食者算法(Marine Predators Algorithm, MPA)是Afshin Faramarzi等人于2020年提出的一种新型元启发式优化算法,其灵感来源于海洋适者生存理论,即海洋捕食者通过在Lévy游原创 2021-08-23 12:10:53 · 1446 阅读 · 4 评论 -
基于人工鱼群算法的WSN覆盖优化
文章目录一、理论基础1、WSN节点覆盖模型2、人工鱼群算法二、仿真实验三、参考文献四、Matlab仿真程序一、理论基础1、WSN节点覆盖模型本文选择经典的二元(0/1)覆盖模型,具体细节可参考这里。2、人工鱼群算法请参考这里。二、仿真实验在区域20×20m,节点数V=24V=24V=24,感知半径Rs=2.5mR_s=2.5mRs=2.5m,通信半径Rc=5mR_c=5mRc=5m,迭代500次下的仿真:图1 初始部署图2 AF算法覆盖率进化曲线图3 AF优化覆盖三、参考文献[原创 2021-05-08 14:15:25 · 1119 阅读 · 5 评论 -
基于樽海鞘群算法的WSN节点的部署优化
文章目录一、理论基础1、节点覆盖模型2、樽海鞘群算法(1)领导者位置更新(2)跟随者位置更新二、仿真结果三、参考文献四、Matlab仿真程序一、理论基础1、节点覆盖模型请参考这里。2、樽海鞘群算法樽海鞘群算法( salp swarm algorithm,SSA)是Seyedali Mirjalili等于2017年提出的一种新型智能优化算法。每次迭代中,领导者指导追随者,以一种链式行为,向食物移动。移动过程中,领导者进行全局探索,而追随者则充分进行局部探索,大大减少了陷入局部最优的情况。樽海鞘群算法原创 2021-05-02 19:56:14 · 1672 阅读 · 2 评论 -
被囊群优化算法在WSN节点部署中的应用
文章目录一、理论基础1、WSN节点覆盖模型2、被囊群优化算法二、仿真结果三、参考文献四、Matlab仿真程序一、理论基础将一种新的智能算法——被囊群优化算法应用于WSN节点的部署问题上,虽然效果一般,但为WSN节点部署的优化提供了新的方法,读者可以在此基础上进行合理改进。1、WSN节点覆盖模型本文的WSN节点覆盖模型与文献[1]相同,具体描述如下:假设WSN监测区域是个二维平面,且数字化为L×ML×ML×M的网格,每个网格大小设为1。在该区域部署NNN个同构传感器,节点集合可以表示为Z={z1,z原创 2021-04-30 14:36:25 · 553 阅读 · 0 评论 -
基于改进粒子群算法的WSN节点部署优化
文章目录一、理论基础1、PSO算法(经典粒子群算法)2、UPSO算法(均匀搜索粒子群算法)3、CPSO算法(本文算法)二、仿真实验与结果分析三、参考文献四、Matlab仿真程序一、理论基础1、PSO算法(经典粒子群算法)请参考这里。2、UPSO算法(均匀搜索粒子群算法)由文献[1]的推导,UPSO算法的位置和速度更新公式如下:{vi(t+1)=wvi(t)+c[rpi(t)+(1−r)pg(t)−xi(t)]xi(t+1)=xi(t)+vi(t+1)(1)\begin{dcases}v_i(t+1原创 2021-04-28 17:10:17 · 2766 阅读 · 6 评论 -
基于加入差分进化策略的杂草算法的WSN节点的部署优化
文章目录一、理论基础1、入侵杂草算法2、差分进化策略二、仿真结果与分析三、参考文献四、Matlab程序一、理论基础受文献[1]的启发,将差分进化算法的策略用到入侵杂草算法当中,仿真结果表明,与原来的杂草算法相比,WSN节点部署覆盖率有很大提升。1、入侵杂草算法请参考这里。2、差分进化策略差分进化算法(Differential Evolution,DE)主要包括变异、交叉和选择3个典型进化算子,具有记忆个体最优解以及受控数少、全局收敛性强等优点。为了解决IWO的缺点,将DE的变异、交叉、选择操作引原创 2021-04-27 21:48:38 · 789 阅读 · 4 评论 -
基于能耗均衡的LEACH改进方法
文章目录一、理论基础1、基于能量的簇头选择阈值2、算法描述二、仿真与结果分析1、仿真参数2、结果分析三、参考文献四、Matlab程序一、理论基础1、基于能量的簇头选择阈值由于簇的规模和簇头选择对WSN总能耗影响较大:一方面,当簇的规模较小时,易导致WSN能量消耗不合理;另一方面,当簇的规模较大时,簇头转发数据量太大、负担较重,易造成能耗增大,使普通成员节点在单位之间可发送的数据量急速降低。故本文提出的簇头选择机制的改进方法为:T′(n)={P1−P×(rmod(1p))×W(resienergy,in原创 2021-04-27 19:33:33 · 2669 阅读 · 7 评论 -
基于能量均衡高效WSN的LEACH协议改进算法
文章目录一、理论基础1、间距因子2、剩余能量因子3、密度因子4、权值的选取二、算法流程三、仿真实验及性能分析1、仿真参数设置2、实验结果及分析四、参考文献五、Matlab代码一、理论基础由于LEACH协议的随机选择簇首原则,可能导致地理条件不佳和能量剩余不足的节点被选为簇首节点。因此本文加入3个因子:间距因子、剩余能量因子和密度因子。综合权衡这几方面,对LEACH协议的T(n)T(n)T(n)计算式进行改进,减少条件不足的节点当选为簇首的概率,减缓节点的枯竭速度,均衡整个网络的能量负载,避免部分节点提前原创 2021-04-23 15:29:36 · 3373 阅读 · 12 评论 -
无线传感器网络路由优化中的能量均衡LEACH改进算法
文章目录一、理论基础1、LEACH算法概述2、改进的LEACH算法二、算法流程图三、仿真实验与分析四、参考文献五、Matlab代码一、理论基础1、LEACH算法概述请参考这里。2、改进的LEACH算法改进的LEACH算法(LEACH-N)主要针对LEACH算法分簇阶段的缺陷而改进的,具体步骤如下:(1)每一个节点计算与其他节点距离小于d0d_0d0的节点数aaa, d0d_0d0的计算公式如下:d0=εfs/εmp(1)d_0=\sqrt{\varepsilon_{fs}/\varepsil原创 2021-04-22 17:53:06 · 5612 阅读 · 21 评论 -
基于最佳簇半径的无线传感器网络分簇路由算法
文章目录一、理论基础1、能耗模型2、基于最佳簇半径的分簇路由算法(1)分簇优化(2)簇间通信二、仿真实验三、参考文献一、理论基础1、能耗模型本文采用一阶无线电模型作为能量消耗模型。节点在发送数据时,采用发送电路发送数据,并且使用放大电路对信号进行放大;接收端接收数据时,采用接收电路解析数据。节点与节点间产生数据通信时,节点的能量消耗与发送端和接收端的距离大小有关。当发送端节点向间距为ddd的接收端节点传送数据时,发送端消耗的能量大小为Etx(k,d)={kEelec+kεfsd2, d<d0kE原创 2021-04-21 18:55:56 · 2683 阅读 · 17 评论 -
基本蚁狮算法在WSN节点部署中的应用
文章目录一、理论基础1、WSN节点覆盖模型2、基本蚁狮算法二、仿真实验与分析三、参考文献四、Matlab代码一、理论基础1、WSN节点覆盖模型请参考这里。2、基本蚁狮算法蚁狮优化算法 ALO(Ant Lion Optimizer)是一种新的群体智能优化算法, 由澳大利亚学者Seyedali于2015年提出。由于其初始参数少和收敛精度高的优点,已被广泛应用于WSN数据收集等多种工程领域。ALO算法原理源于自然界中蚁狮猎食蚂蚁行为的启发,描述如下:随机初始化种群位置,计算适应度值,并采用轮盘赌方法原创 2021-04-20 21:37:45 · 1067 阅读 · 2 评论 -
基于入侵杂草和花授粉混合算法的WSN节点部署优化
文章目录一、理论基础1、节点与覆盖模型2、入侵杂草算法3、花授粉算法二、仿真分析三、参考文献四、Matlab代码一、理论基础1、节点与覆盖模型请参考这里。2、入侵杂草算法请参考这里。3、花授粉算法花授粉算法模拟了自然界中显花植物的花朵授粉过程。为了简化问题,使算法更加高效,同时考虑到优化问题仅有一个解,Yang假设每株显花植物都只能孕育出一朵花,并且每朵花只能产生一个花粉配子。根据文献[1]的描述,花朵授粉过程可以总结为以下4条规律:(a)生物异花授粉被视为全局授粉过程,花粉载体携带花粉执行原创 2021-04-16 21:03:36 · 1370 阅读 · 2 评论 -
改进杂草算法求解WSN节点分布优化问题
文章目录一、理论基础1、问题描述2、改进的杂草算法(1)IWO算法描述(2)立方混沌算子(3)高斯变异算子(4)算法伪代码二、仿真分析三、参考文献四、Matlab代码一、理论基础1、问题描述假设一个二维平面区域A可以离散成s×s的网格,每个网格的面积为 1。若整个区域内分布着nnn个无线传感器节点,每个节点都可以通过某种特殊方式(像北斗导航)来获取自身位置,并拥有相同的感知半径RRR。因此,区域 A 上的所有WSN节点集可被描述成:S={s1,s2,⋯ ,sn}(1)S=\{s_1,s_2,\cdot原创 2021-04-13 19:10:11 · 959 阅读 · 4 评论 -
基于改进鲸鱼优化算法的WSN覆盖优化
文章目录一、理论基础1、WSN节点覆盖模型2、基本鲸鱼算法3、改进鲸鱼优化算法(1)量子位Bloch球面初始化(2)改进搜索猎物过程(3)莱维飞行扰动策略二、算法流程三、仿真实验与分析1、实验环境2、实验结果(1)与FA算法对比(2)与EABC算法对比四、参考文献一、理论基础1、WSN节点覆盖模型假设WSN监测区域是个二维平面,且数字化为L×ML×ML×M的网格,每个网格大小设为1。在该区域部署NNN个同构传感器,节点集合可以表示为Z={z1,z2,⋯ ,zN}Z=\{z_1,z_2,\cdots,z原创 2021-04-09 17:19:32 · 4063 阅读 · 12 评论 -
改进灰狼优化算法在WSN节点部署中的应用
文章目录一、理论基础1、节点与覆盖模型2、灰狼优化算法基本原理3、改进灰狼优化算法(1)非线性收敛因子(2)δ\deltaδ狼的融合变异二、节点部署优化算法1、算法步骤2、算法流程图三、仿真实验与分析四、参考文献一、理论基础1、节点与覆盖模型假设在面积为S=L1×L2S=L_1×L_2S=L1×L2的二维正方形WSN监测区域内,随机部署NNN个同构传感器节点,节点集合定义为Z={z1,z2,⋯ ,zi,⋯ ,zN}Z=\{z_1,z_2,\cdots,z_i,\cdots,z_N\}Z={z1,原创 2021-04-08 16:03:52 · 2496 阅读 · 13 评论 -
基于粒子群和改进萤火虫(PGSO)算法的无线传感器网络的覆盖优化
文章目录一、理论基础1、粒子群(PSO)算法2、改进萤火虫(GSO)算法(1)适应度值(2)移动概率(3)位置更新二、算法流程三、MATLAB程序实现1、参数设置2、计算覆盖率函数3、改进GSO适应度函数4、主函数5、结果分析四、算法对比五、参考文献一、理论基础1、粒子群(PSO)算法请参考这里。2、改进萤火虫(GSO)算法标准萤火虫算法请参考这里。本文结合无线传感器网络的具体应用场景提出了改进萤火虫算法,具体改进的地方有以下几点:(1)适应度值在运用到 WSN 覆盖优化中,每个萤火虫就认为原创 2021-03-25 12:20:56 · 4905 阅读 · 12 评论 -
基于改进蚁群算法的WSN路由优化研究
文章目录一、理论基础1、LEACH2、LEACH-ANT(1)阈值公式(2)能见度系数(启发函数)3、LEACH-IACA(1)簇首建立阶段(2)簇间传输阶段二、仿真与分析三、参考文献一、理论基础1、LEACH请参考文献[1]。2、LEACH-ANT针对LEACH存在的缺陷,改进点主要有以下两点:(1)阈值公式首先改进LEACH协议的簇首选举规则。修改阈值TiT_iTi的生成公式为:Ti={p1−p×(rmod(1/p))(Ei,currentEi,total)α(Ei,currentEav原创 2021-02-09 20:56:49 · 2932 阅读 · 18 评论 -
异构无线传感器网络分布式节能分簇算法的设计(DEEC)
文章目录一、理论基础1、LEACH2、SEP3、LEACH-E(1)簇头选取机制(2)BS充当簇头4、DEEC(1)基于剩余能量的簇首选择算法(2)估计网络的平均能量二、仿真与分析1、存活节点数2、基站接收的数据包个数3、死亡节点个数4、结论三、参考文献一、理论基础1、LEACH请参考这里。2、SEP请参考文献[2]。3、LEACH-ELEACH-E算法对LEACH算法的改进如下。(1)簇头选取机制新的簇头选取公式为T(n)={p1−p(rmod(1/p))Ei_restEavn∈G0原创 2021-02-06 11:43:52 · 4240 阅读 · 33 评论