基于寄生-捕食算法的函数寻优算法

一、理论基础

1、寄生-捕食算法

文献[1]提出了一种新的元启发式优化方法—寄生-捕食算法(Parasitism-Predation Algorithm, PPA),该算法在乌鸦-布谷鸟-猫系统模型中模拟捕食者(猫)、寄生虫(布谷鸟)和宿主(乌鸦)之间的相互作用,以克服大数据的低收敛性和维数诅咒的问题。

(1)初始化

通过获得 n n n个最佳鸟巢,评估所有新的解决方案以解决 d d d维优化问题,如下所示: X i n e w = X i min ⁡ + r 1 ( X i max ⁡ − X i min ⁡ ) (1) X_i^{new}=X_i^{\min}+r_1(X_i^{\max}-X_i^{\min})\tag{1} Xinew=Ximin+r1(XimaxXimin)(1)其中, X i n e w X_i^{new} Xinew是初始解( i = 1 , 2 , … , n i=1,2,\ldots,n i=1,2,,n), X i min ⁡ X_i^{\min} Ximin是下限, X i max ⁡ X_i^{\max} Ximax是上限, r 1 r_1 r1是从0到1之间的均匀分布中提取的随机变量。

(2)筑巢阶段(鸟窝)

初始化后,优化算法将进入筑巢阶段、寄生阶段和捕食阶段。一开始,随着时间的推移,猫减少了乌鸦的数量。通过模拟乌鸦飞行的两种状态来评估筑巢阶段。第一种状态是通过生成随机候选乌鸦,为乌鸦 i i i生成一个新位置,如下所示: X i t + 1 = X i t + F ( X r 1 − X i t ) ∀ i ∈ n c r o w (2) X_i^{t+1}=X_i^t+F(X_{r_1}-X_i^t)\quad\forall i\in n_{crow}\tag{2} Xit+1=Xit+F(Xr1Xit)incrow(2)其中, r 1 r_1 r1是一个随机指数, F F F是一个Levy飞行步长,它是基于 ∝ \propto 稳定分布计算的,具有使用不同步长跨越大尺度距离的能力。 L e v y ( σ , μ ) Levy(\sigma,\mu) Levy(σ,μ)分布的简单版本密度是: f ( q ) = γ 2 π 1 ( q − μ ) 3 / 2 exp ⁡ ( − σ 2 ( q − μ ) ) 0 < μ < q < ∞ (3) f(q)=\sqrt{\frac{\gamma}{2\pi}}\frac{1}{(q-\mu)^{3/2}}\exp\left(-\frac{\sigma}{2(q-\mu)}\right)\quad 0<\mu<q<\infty\tag{3} f(q)=2πγ (qμ)3/21exp(2(qμ)σ)0<μ<q<(3)使用蒙特卡洛算法生成具有与Levy飞行相同行为的随机样本 L i L_i Li,用于模拟 ∝ \propto 稳定分布: L i ∼ s t e p ⊕ L e v y ( ∝ ) ∼ 0.01 u ∣ y ∣ 1 / α (4) L_i\sim step\oplus Levy(\propto)\sim0.01\frac{u}{|y|^{1/\alpha}}\tag{4} ListepLevy()0.01y1/αu(4)其中, s t e p step step是与问题规模相关的缩放系数, u = N ( 0 , σ u 2 ) u=N(0,\sigma_u^2) u=N(0,σu2) y = N ( 0 , σ y 2 ) y=N(0,\sigma_y^2) y=N(0,σy2)分别是满足 σ u = [ Γ ( 1 + α ) sin ⁡ ( π α / 2 ) Γ ( ( 1 + α ) / 2 ) α 2 ( α − 1 ) / 2 ] 1 / α ,    σ y = 1 \sigma_u=\left[\frac{\Gamma(1+\alpha)\sin(\pi\alpha/2)}{\Gamma((1+\alpha)/2)\alpha2^{(\alpha-1)/2}}\right]^{1/\alpha},\,\,\sigma_y=1 σu=[Γ((1+α)/2)α2(α1)/2Γ(1+α)sin(πα/2)]1/α,σy=1的正态分布, ⊕ \oplus 表示矢量乘法。
在筑巢阶段,通过Levy飞行过程,利用当前最佳巢群更新解,发现鸟窝。Levy飞行已经在许多物种中被观察到,这是一种随机游走。Levy飞行的步长由重尾概率分布控制,通常称为Levy分布。Levy飞行在搜索空间的探索上优于均匀随机分布,因此用它代替均匀随机运动来模拟陷入局部最优、过早收敛的规避行为,提高整体搜索空间的探索能力。第二步是通过重新初始化被违反的维度,从之前的状态修改被违反的维度,如下所示: X i , o u t n e w = X i , o u t min ⁡ + ( X i , o u t max ⁡ − X i , o u t min ⁡ ) r a n d [ 0 , 1 ] ∀    o u t ∈ v i o l a t e d d i m e n s i o n (5) X_{i,out}^{new}=X_{i,out}^{\min}+\left(X_{i,out}^{\max}-X_{i,out}^{\min}\right)rand[0,1]\quad\forall\,\,out\in violateddimension\tag{5} Xi,outnew=Xi,outmin+(Xi,outmaxXi,outmin)rand[0,1]outviolateddimension(5)重新初始化“呈现总体的随机变化,以获得增强的探索和增强搜索空间的多样性。这一阶段被设计为纯粹的探索阶段,在第一种状态下使用Levy飞行,提供在整个搜索空间中散布乌鸦的高能力。此外,超出边界外的维度都要受到约束。

(3)寄生阶段(乌鸦-布谷鸟)

一开始,当捕食效率较低时,猫会将布谷鸟赶尽杀绝;捕食效率高时,导致布谷鸟灭绝。布谷鸟的效率被假定为弱/中等,而猫的效率则降低了。在此阶段,将部分乌鸦卵(宿主)替换为布谷鸟卵,布谷鸟卵与乌鸦卵相似,被发现的可能性较小。此外,根据适应度值选择被寄生的巢,巢越好,被寄生的几率越大。构建新的巢穴来取代一些巢穴,并以概率 p a p_a pa发现一小部分较差的巢穴。布谷鸟的新巢可以通过下式得到: X i , n e w c u c k o o = X i , o l d c u c k o o + S G ⋅ k (6) X_{i,new}^{cuckoo}=X_{i,old}^{cuckoo}+S_G\cdot k\tag{6} Xi,newcuckoo=Xi,oldcuckoo+SGk(6) S G = ( X r 2 − X r 3 ) r a n d [ 0 , 1 ] (7) S_G=(X_{r_2}-X_{r_3})rand[0,1]\tag{7} SG=(Xr2Xr3)rand[0,1](7)其中, X i , o l d c u c k o o X_{i,old}^{cuckoo} Xi,oldcuckoo是通过轮盘赌选择的个体; S G S_G SG是均匀高斯分布步长; k k k定义为二进制矩阵,计算如下: k = r a n d [ 0 , 1 ] > p a (8) k=rand[0,1]>p_a\tag{8} k=rand[0,1]>pa(8)其中, p a p_a pa是由 t / 2 T t/2T t/2T g / 2 G g/2G g/2G给出的递增因子,其中 T T T G G G是最大迭代次数, t t t g g g是当前迭代次数。采用二元矩阵 k k k尽可能保留老布谷鸟的相当部分,保留探索搜索空间。寄生阶段开始时,矩阵 k k k被1填充。然后,增加其价值以改善种群。
由于布谷鸟分泌的驱虫剂,寄生鸟巢被捕食的可能性要小得多。在鸟巢内,有布谷鸟雏鸟的鸟会有更少的乌鸦。根据捕食的压力有多大,这种过程产生的平衡影响范围基本上是从寄生到筑巢。

(4)捕食阶段(乌鸦-猫)

一开始,强大的捕食效率导致猫和乌鸦的爆炸性增长减少,无法为布谷鸟提供足够的生存资源,因此布谷鸟灭绝。这个阶段基于猫的追踪模式,可以是乌鸦-猫阶段。不需要执行搜索模式,因为猫知道空的搜索空间并且不需要搜索。在这个阶段,布谷鸟雏鸟会释放出排斥猫的排斥性化合物。猫追踪巢穴时,臭味分泌物很少,而不是被布谷鸟占据,并随机选择非寄生巢穴作为追踪模式。一旦猫开始追踪猎物,它们就会根据自己的速度在各个维度上移动。猫的强捕食效率导致猫的爆炸性增长,乌鸦和杜鹃的低增长。该阶段包括三个步骤:
步骤1:更新各个维度的速度如下: v k , d = v k , d + r . c . ( x b e s t , d − x k , d ) , d = 1 , 2 , ⋯   , M (9) v_{k,d}=v_{k,d}+r.c.(x_{best,d}-x_{k,d}),\quad d=1,2,\cdots,M\tag{9} vk,d=vk,d+r.c.(xbest,dxk,d),d=1,2,,M(9)其中, v k , d v_{k,d} vk,d表示 c a t k cat_k catk d d d维上的速度, x b e s t , d x_{best,d} xbest,d是具有最佳适应值的猫的位置, x k , d x_{k,d} xk,d c a t k cat_k catk的位置, c c c是常数, r r r [ 0 , 1 ] [0,1] [0,1]范围内的随机值。
步骤2:检查更新速度是否超过最大速度范围。在新速度大于最大速度的情况下,它被设置为等于极限(速度极限被修改为从1线性下降到0.25)
步骤3:更新 c a t k cat_k catk的位置如下: x k , d = x k , d + v k , d (10) x_{k,d}=x_{k,d}+v_{k,d}\tag{10} xk,d=xk,d+vk,d(10)

2、PPA算法伪代码

PPA算法的伪代码如图1所示。
在这里插入图片描述

图1 PPA算法伪代码

二、仿真实验与结果分析

对PPA算法单独实验,以常用23个测试函数中的F3、F4(单峰函数/30维)、F9、F10(多峰函数/30维)、F20、F21(固定维度多峰函数/6维、4维)为例,实验设置种群规模为30,最大迭代次数为1000,每种算法独立运算30次,结果显示如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

函数:F3
PPA:best: 128.2791, worst: 2096.902, mean: 564.3674, std: 369.7015
函数:F4
PPA:best: 25.5105, worst: 51.9664, mean: 37.5791, std: 6.8245
函数:F9
PPA:best: 36.8724, worst: 121.3954, mean: 70.894, std: 22.0422
函数:F10
PPA:best: 9.6145, worst: 16.0049, mean: 12.8844, std: 1.6332
函数:F20
PPA:best: -3.322, worst: -3.1164, mean: -3.2602, std: 0.074985
函数:F21
PPA:best: -10.1532, worst: -2.2426, mean: -6.8288, std: 3.0824

实验结果表明:PPA算法在求解优化问题上具有良好的性能。

三、参考文献

[1] Al-Attar A. Mohamed, S.A. Hassan, A.M. Hemeida, et al. Parasitism – Predation algorithm (PPA): A novel approach for feature selection[J]. Ain Shams Engineering Journal, 2020, 11: 293-308.

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于寄生捕食优化的机器人路径规划算法是一种基于仿生智能的算法,在机器人路径规划问题中应用了寄生捕食行为的优化策略。 该算法的主要思想是模拟寄生捕食行为中的寄生虫对其宿主寄生过程,通过寄生虫寻找宿主的过程来优化机器人路径规划。具体步骤如下: 1. 初始化:设定起始点和目标点,并初始化一群随机生成的路径作为初始解。 2. 评估路径:对每条路径进行评估,计算其适应度值,可以根据问题的具体要求设计适应度函数。 3. 寄生捕食过程:选择适应度值较高的路径作为宿主,对其进行寄生操作。这里可以采用一种变异操作,如交叉、变异等,产生一系列新的路径作为寄生虫。 4. 评估寄生虫:对生成的新路径进行评估,计算其适应度值。 5. 更新路径:根据适应度值,选择较优的路径作为下一轮迭代的宿主,更新当前最优路径。 6. 终止条件:当达到预设的终止条件(如迭代次数、适应度值达到一定阈值等)时,停止算法并输出最优路径。 7. 输出结果:得到优化后的路径。 通过模拟寄生捕食行为,该算法可以在搜索空间中不断寻找更优的路径解。然而,具体的实现和效果还需要根据具体的问题和算法细节进行评估。此外,寄生捕食优化算法还可以结合其他启发式搜索算法或优化方法进行改进,以提高路径规划的效果和性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值