基于精英反向学习和Lévy飞行的鲸鱼优化算法

一、理论基础

1、鲸鱼优化算法

请参考这里

2、改进鲸鱼优化算法

本文在鲸鱼优化算法基础上,提出一种基于精英反向学习和Lévy飞行的鲸鱼优化算法,主要利用精英反向学习优化初始化种群,提高初始种群的多样性;算法搜索增加自适应权重因子,有效平衡全局搜索和局部搜索能力;将Lévy飞行策略应用到鲸鱼优化算法,在最优位置附近进行小范围搜索,有利于算法在后期跳出局部最优,提升鲸鱼优化算法的局部搜索能力。

(1)基于精英反向学习的种群初始化

利用精英反向学习优化初始化的种群,产生精英反向学习的种群个体 X ‾ i \overline{X}_i Xi,表示为 X ‾ i = k ( L + U ) − X i (1) \overline{X}_i=k(L+U)-X_i\tag{1} Xi=k(L+U)Xi(1)其中, X i X_i Xi表示当前个体的位置信息, L L L为表示可行解的最小值, U U U为可行解的最大值, k k k ( 0 , 1 ) (0,1) (0,1)之间的随机数。
经过精英反向学习优化后,计算相应个体的适应度函数值,通过比较当前个体和优化后个体适应度函数值,选择适应度值较优的个体作为初始种群个体。采用如下精英反向学习优化随机的初始化种群 X i = { X ‾ i , f ( X ‾ i ) < f ( X i ) X i , e l s e (2) X_i=\begin{dcases}\overline X_i,\quad f(\overline X_i)<f(X_i)\\X_i,\quad else\end{dcases}\tag{2} Xi={Xi,f(Xi)<f(Xi)Xi,else(2)

(2)自适应权重

自适应权重因子可有效平衡算法的全局搜索和局部搜索能力。鲸鱼优化算法引入自适应权重因子,公式如下: ω = sin ⁡ ( π ⋅ t 2 ⋅ T max ⁡ + π ) + 1 (3) \omega=\sin(\frac{\pi\cdot t}{2\cdot T_{\max}}+\pi)+1\tag{3} ω=sin(2Tmaxπt+π)+1(3)其中, t t t为当前迭代次数, T max ⁡ T_{\max} Tmax为最大迭代次数。
增加自适应权重因子后,鲸鱼优化算法的优化过程分别表示为: X ( t + 1 ) = ω ⋅ X ∗ ( t ) − A ⋅ D (4) X(t+1)=\omega\cdot X^*(t)-A\cdot D\tag{4} X(t+1)=ωX(t)AD(4) X ( t + 1 ) = ω ⋅ X ∗ ( t ) + D ′ ⋅ e b l cos ⁡ ( 2 π l ) (5) X(t+1)=\omega\cdot X^*(t)+D'\cdot e^{bl}\cos(2\pi l)\tag{5} X(t+1)=ωX(t)+Deblcos(2πl)(5) X ( t + 1 ) = ω ⋅ X r a n d ( t ) − A ⋅ D (6) X(t+1)=\omega\cdot X_{rand}(t)-A\cdot D\tag{6} X(t+1)=ωXrand(t)AD(6)

(3)Lévy飞行

Lévy飞行是一种随机搜索方式,已广泛应用于多种智能优化算法。鲸鱼优化算法采用Lévy飞行策略,在最优位置附近进行小范围搜索,有效扩大算法的搜索范围,可种群跳出局部最优。
采用Lévy飞行的位置更新公式为: X ( t + 1 ) = X ( t ) + α ( t ) L ( β ) X ( t ) (7) X(t+1)=X(t)+\alpha(t)L(\beta)X(t)\tag{7} X(t+1)=X(t)+α(t)L(β)X(t)(7)其中,Lévy飞行的数学模型请参考这里

二、实验结果与分析

本文选取标准WOA与提出的改进WOA算法(ELWOA)进行性能对比分析,设置算法的最大迭代次数为500,种群个数为30,维度为30,其他参数设置如文献[1]中表1所示。以文献[1]中表2的8个测试函数为例。对于每个测试函数,使用MATLAB仿真软件分别独立连续计算30次,结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F1
ELWOA:最差值: 0,最优值:0,平均值:0,标准差:0
WOA:最差值: 1.1075e-67,最优值:1.007e-92,平均值:3.6916e-69,标准差:2.0219e-68
函数:F2
ELWOA:最差值: 0,最优值:0,平均值:0,标准差:0
WOA:最差值: 2.4896e-49,最优值:1.2535e-57,平均值:1.659e-50,标准差:5.7816e-50
函数:F3
ELWOA:最差值: 0,最优值:0,平均值:0,标准差:0
WOA:最差值: 63704.3766,最优值:13413.4272,平均值:45045.7799,标准差:9881.6357
函数:F4
ELWOA:最差值: 0,最优值:0,平均值:0,标准差:0
WOA:最差值: 89.8752,最优值:0.57395,平均值:44.402,标准差:27.559
函数:F5
ELWOA:最差值: 0.00053919,最优值:3.2953e-06,平均值:0.00011683,标准差:0.00011183
WOA:最差值: 0.019924,最优值:6.2417e-05,平均值:0.0031494,标准差:0.0043679
函数:F6
ELWOA:最差值: 0,最优值:0,平均值:0,标准差:0
WOA:最差值: 5.6843e-14,最优值:0,平均值:1.8948e-15,标准差:1.0378e-14
函数:F7
ELWOA:最差值: 8.8818e-16,最优值:8.8818e-16,平均值:8.8818e-16,标准差:0
WOA:最差值: 7.9936e-15,最优值:8.8818e-16,平均值:5.033e-15,标准差:1.8853e-15
函数:F8
ELWOA:最差值: 0,最优值:0,平均值:0,标准差:0
WOA:最差值: 0.41471,最优值:0,平均值:0.02365,标准差:0.091368

通过以上对比分析,基于精英反向学习和Lévy飞行的鲸鱼优化算法的稳定性好,收敛精度高,收敛速度优于鲸鱼算法。

三、参考文献

[1] 孟宪猛, 蔡翠翠. 基于精英反向学习和Lévy飞行的鲸鱼优化算法[J/OL]. 电子测量技术: 1-6 [2021-11-26].

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值