一、理论基础
1、鲸鱼优化算法
请参考这里。
2、改进鲸鱼优化算法
本文在鲸鱼优化算法基础上,提出一种基于精英反向学习和Lévy飞行的鲸鱼优化算法,主要利用精英反向学习优化初始化种群,提高初始种群的多样性;算法搜索增加自适应权重因子,有效平衡全局搜索和局部搜索能力;将Lévy飞行策略应用到鲸鱼优化算法,在最优位置附近进行小范围搜索,有利于算法在后期跳出局部最优,提升鲸鱼优化算法的局部搜索能力。
(1)基于精英反向学习的种群初始化
利用精英反向学习优化初始化的种群,产生精英反向学习的种群个体
X
‾
i
\overline{X}_i
Xi,表示为
X
‾
i
=
k
(
L
+
U
)
−
X
i
(1)
\overline{X}_i=k(L+U)-X_i\tag{1}
Xi=k(L+U)−Xi(1)其中,
X
i
X_i
Xi表示当前个体的位置信息,
L
L
L为表示可行解的最小值,
U
U
U为可行解的最大值,
k
k
k为
(
0
,
1
)
(0,1)
(0,1)之间的随机数。
经过精英反向学习优化后,计算相应个体的适应度函数值,通过比较当前个体和优化后个体适应度函数值,选择适应度值较优的个体作为初始种群个体。采用如下精英反向学习优化随机的初始化种群
X
i
=
{
X
‾
i
,
f
(
X
‾
i
)
<
f
(
X
i
)
X
i
,
e
l
s
e
(2)
X_i=\begin{dcases}\overline X_i,\quad f(\overline X_i)<f(X_i)\\X_i,\quad else\end{dcases}\tag{2}
Xi={Xi,f(Xi)<f(Xi)Xi,else(2)
(2)自适应权重
自适应权重因子可有效平衡算法的全局搜索和局部搜索能力。鲸鱼优化算法引入自适应权重因子,公式如下:
ω
=
sin
(
π
⋅
t
2
⋅
T
max
+
π
)
+
1
(3)
\omega=\sin(\frac{\pi\cdot t}{2\cdot T_{\max}}+\pi)+1\tag{3}
ω=sin(2⋅Tmaxπ⋅t+π)+1(3)其中,
t
t
t为当前迭代次数,
T
max
T_{\max}
Tmax为最大迭代次数。
增加自适应权重因子后,鲸鱼优化算法的优化过程分别表示为:
X
(
t
+
1
)
=
ω
⋅
X
∗
(
t
)
−
A
⋅
D
(4)
X(t+1)=\omega\cdot X^*(t)-A\cdot D\tag{4}
X(t+1)=ω⋅X∗(t)−A⋅D(4)
X
(
t
+
1
)
=
ω
⋅
X
∗
(
t
)
+
D
′
⋅
e
b
l
cos
(
2
π
l
)
(5)
X(t+1)=\omega\cdot X^*(t)+D'\cdot e^{bl}\cos(2\pi l)\tag{5}
X(t+1)=ω⋅X∗(t)+D′⋅eblcos(2πl)(5)
X
(
t
+
1
)
=
ω
⋅
X
r
a
n
d
(
t
)
−
A
⋅
D
(6)
X(t+1)=\omega\cdot X_{rand}(t)-A\cdot D\tag{6}
X(t+1)=ω⋅Xrand(t)−A⋅D(6)
(3)Lévy飞行
Lévy飞行是一种随机搜索方式,已广泛应用于多种智能优化算法。鲸鱼优化算法采用Lévy飞行策略,在最优位置附近进行小范围搜索,有效扩大算法的搜索范围,可种群跳出局部最优。
采用Lévy飞行的位置更新公式为:
X
(
t
+
1
)
=
X
(
t
)
+
α
(
t
)
L
(
β
)
X
(
t
)
(7)
X(t+1)=X(t)+\alpha(t)L(\beta)X(t)\tag{7}
X(t+1)=X(t)+α(t)L(β)X(t)(7)其中,Lévy飞行的数学模型请参考这里。
二、实验结果与分析
本文选取标准WOA与提出的改进WOA算法(ELWOA)进行性能对比分析,设置算法的最大迭代次数为500,种群个数为30,维度为30,其他参数设置如文献[1]中表1所示。以文献[1]中表2的8个测试函数为例。对于每个测试函数,使用MATLAB仿真软件分别独立连续计算30次,结果显示如下:
函数:F1
ELWOA:最差值: 0,最优值:0,平均值:0,标准差:0
WOA:最差值: 1.1075e-67,最优值:1.007e-92,平均值:3.6916e-69,标准差:2.0219e-68
函数:F2
ELWOA:最差值: 0,最优值:0,平均值:0,标准差:0
WOA:最差值: 2.4896e-49,最优值:1.2535e-57,平均值:1.659e-50,标准差:5.7816e-50
函数:F3
ELWOA:最差值: 0,最优值:0,平均值:0,标准差:0
WOA:最差值: 63704.3766,最优值:13413.4272,平均值:45045.7799,标准差:9881.6357
函数:F4
ELWOA:最差值: 0,最优值:0,平均值:0,标准差:0
WOA:最差值: 89.8752,最优值:0.57395,平均值:44.402,标准差:27.559
函数:F5
ELWOA:最差值: 0.00053919,最优值:3.2953e-06,平均值:0.00011683,标准差:0.00011183
WOA:最差值: 0.019924,最优值:6.2417e-05,平均值:0.0031494,标准差:0.0043679
函数:F6
ELWOA:最差值: 0,最优值:0,平均值:0,标准差:0
WOA:最差值: 5.6843e-14,最优值:0,平均值:1.8948e-15,标准差:1.0378e-14
函数:F7
ELWOA:最差值: 8.8818e-16,最优值:8.8818e-16,平均值:8.8818e-16,标准差:0
WOA:最差值: 7.9936e-15,最优值:8.8818e-16,平均值:5.033e-15,标准差:1.8853e-15
函数:F8
ELWOA:最差值: 0,最优值:0,平均值:0,标准差:0
WOA:最差值: 0.41471,最优值:0,平均值:0.02365,标准差:0.091368
通过以上对比分析,基于精英反向学习和Lévy飞行的鲸鱼优化算法的稳定性好,收敛精度高,收敛速度优于鲸鱼算法。
三、参考文献
[1] 孟宪猛, 蔡翠翠. 基于精英反向学习和Lévy飞行的鲸鱼优化算法[J/OL]. 电子测量技术: 1-6 [2021-11-26].