1. Motivation
- For many tasks, paired training data will not be available.
- We present an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples.
对于Cycle consistent的引入很重要,否则会出现模式崩溃的问题,所有输入图像都映射到相同的输出图像并且优化无法取得进展。
- Moreover, in practice,where all input images map to the same output image and the optimization fails to make progress.
2. Contribution
-
We apply our method to a wide range of applications, including collection style transfer, object transfiguration, season transfer and photo enhancement.
-
We also compare against previous approaches that rely either on hand-defined factorizations of style and content, or on shared embedding functions, and show that our method outperforms these baselines.
3. Method
3.1 Adversarial Loss
3.2 Cycle Consistency Loss
3.3 Full Objective
Cylce GAN中的loss部分,其中与pixel2pixelGAN不同的是,CycleGAN采用的是先update G在D的方法,使用detach()。
训练的时候,是A–>B; B–>A 同时进行的,一次迭代过程需要优化G_A, G_B, D_A, D_B。
def forward(self):
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
self.fake_B = self.netG_A(self.real_A) # G_A(A)
self.rec_A = self.netG_B(self.fake_B) # G_B(G_A(A))
self.fake_A = self.netG_B(
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



