评估指标

二分类:准确率P(precision),召回率R(recal),F1度量
TP(真正例),FP(假正例),TN(真反例),FN(假反例)

P = T P T P + F P P = \frac{TP}{TP + FP} P=TP+FPTP R = T P T P + F N R = \frac{TP}{TP + FN} R=TP+FNTP F 1 = 2 ∗ P ∗ R P + R F1 = \frac{2 * P * R}{P + R} F1=P+R2PR

ROC

针对二分类问题:
(1)若一个实例是正类,被预测为正类,即为真正类(True Postive TP)
(2)若一个实例是正类,被预测成为负类,即为假负类(False Negative FN)
(3)若一个实例是负类,被预测成为正类,即为假正类(False Postive FP)
(4)若一个实例是负类,被预测成为负类,即为真负类(True Negative TN)

真正类率(True Postive Rate):代表分类器预测的正类中实际正实例占所有正实例的比例。Sensitivity
T P R = T P ( T P + F N ) TPR=\frac{TP}{(TP+FN)} TPR=(TP+FN)TP
负正类率(False Postive Rate):代表分类器预测的正类中实际负实例占所有负实例的比例。1-Specificity
F P R = F P ( F P + T N ) FPR=\frac{FP}{(FP+TN)} FPR=(FP+TN)FP

在这里插入图片描述
横轴FPR:1-TNR,1-Specificity,FPR越大,预测正类中实际负类越多。
纵轴TPR:Sensitivity(正类覆盖率),TPR越大,预测正类中实际正类越多。
理想目标:TPR=1,FPR=0,即图中(0,1)点,故ROC曲线越靠拢(0,1)点,越偏离45度对角线越好,Sensitivity、Specificity越大效果越好。

画ROC:

假设已经得出一系列样本被划分为正类的概率,然后按照大小排序,下图是一个示例,图中共有20个测试样本,“Class”一栏表示每个测试样本真正的标签(p表示正样本,n表示负样本),“Score”表示每个测试样本属于正样本的概率。在这里插入图片描述
将“Score”值作为阈值threshold;可画以下曲线:在这里插入图片描述
AUC:ROC曲线下的面积

  首先对score从大到小排序,然后令最大score对应的sample 的rank为n,第二大score对应sample的rank为n-1,以此类推。然后把所有的正类样本的rank相加,再减去M+1种两个正样本组合的情况。得到的就是所有的样本中有多少对正类样本的score大于负类样本的score。然后再除以M×N。即:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值