- 博客(21)
- 收藏
- 关注
原创 行人重识别基础知识
对于每个人,有10个可见图像和10个红外图像。属于A类的物体1,经过分类器,得到属于A、B、C类的概率是80%,15%,5%,所以将物体1,判定为A类,物体1经过一次排序就被命中正确的类,所以我们引入Rank-1为100%。物体2本来属于B类,被我们训练的分类器分类为A、B、C的概率分别为50%,40%,10%,所以被判定为A类,按照概率排序,如果有两次机会,才能命中,这就是Rank-2的含义。比如,我们训练了一个分类器,来识别五个物体,即五个query图像1,2,3,4,5,他们属于3类即A,B,C。
2023-10-27 21:30:41 493
原创 pose-运行四楼
在 https://pytorch.org/ 找到cuda10.1对应版本的链接并输入。在项目所在位置打开命令行,用命令行运行,运行错误的包再安装。1.查看cuda版本 10.1版本。3.进入环境,下载conda。2.创建conda环境。
2024-10-06 20:27:44 127
原创 resnet基础网络知识
1.卷积层 (Convolutional Layer):通常包含两个或三个卷积层(一般使用 3x3 的卷积核),每个卷积层后面通常会跟随批归一化(Batch Normalization)和 ReLU 激活函数。其中Y 是 Identity Block 的最终输出,你可以看到,输入 XX直接与卷积层的输出相加,形成最终输出 Y。第二卷积层:使用 128 个 3x3 的卷积核,输出特征图大小为 224x224,128 个通道。全连接层:将卷积层的输出展平后连接到一个全连接层,最终输出分类结果。
2024-09-30 20:36:59 249
原创 Pose运行记录
接下来利用pip安装torch,命令是pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu116。激活环境,下载numpy和panda的包, pip install numpy,pip install pandas。新建Pose的conda环境。
2024-09-26 10:28:55 115
原创 High-Order Structure Based Middle-Feature Learning for Visible-Infrared Person Re-identification
3.最后,我们开发了一个公共特征空间学习(CFL)模块,该模块通过对不同模态和范围的特征进行对齐生成的中间特征来学习一个判别合理的公共特征空间。特别是,提出了模态范围身份中心对比(mrc)损失,以减少VIS, IR和中间特征之间的距离,使训练过程更加平滑。2.然后,我们提出了一个基于白化超图网络的高阶结构学习(HSL)模块,成功地建立了每个人图像不同局部特征之间的高阶关系模型。我们提出了一种新的基于高阶结构的中间特征学习网络(HOS-Net),用于有效的VI-ReID。1.忽略特征的高阶结构信息。
2024-06-13 16:22:10 224
原创 SAAI:Visible-Infrared Person Re-Identification via Semantic Alignment and Affinity Inference
代码: https://github.com/xiaoye-hhh/SAAI。基于语义对齐和关联推理的可见-红外人物再识别。
2024-04-22 09:54:18 265
原创 Learning Progressive Modality-Shared Transformers for Effective Visible-Infrared Person Re-identific
学习渐进式模态共享transformers用于有效的可见-红外人员再识别会议:AAAI CCF-A代码:https://github.com/hulu88/PMT摘要:为了减少模态间隙的负面影响,我们首先将灰度图像作为辅助模态(去除可见图像的颜色信息),并提出一种渐进式学习策略。然后,我们提出了模态共享增强损失(MSEL)来指导模型从模态共享特征中探索更可靠的身份信息。
2024-04-09 11:44:01 1850
原创 On Exploring Pose Estimation as an Auxiliary Learning Task for Visible-Infrared Person Re-identifica
On Exploring Pose Estimation as an AuxiliaryLearning Task for Visible-Infrared PersonRe-identification
2024-03-31 20:46:22 160 1
原创 16DMA: Dual Modality-Aware Alignment for Visible-Infrared Person Re-Identification
期刊:IEEE TRANSACTIONS ON INFORMA TION FORENSICS AND SECURITY , VOL. 19, 2024。代码地址:https://github.com/PKU-ICST-MIPL/DMA_TIFS2023。CCF-A类,中科院一区。
2024-03-04 20:53:04 250
原创 05-面向可见-红外人物再识别的同质模态学习和多粒度信息挖掘
Towards Homogeneous Modality Learning and Multi-Granularity Information Exploration for Visible-Infrared Person Re-Identification
2023-12-29 21:49:29 732 1
原创 14-Dual-Semantic Consistency Learning for Visible-Infrared Person Re-Identification
代码地址:https://github.com/bitreidgroup/DSCNet。基于双语义一致性学习的可见红外人物再识别。CCF-A类,中科院一区。
2023-11-20 21:10:57 280 1
原创 机器学习术语
mini-batch 是一个相对较小的数据子集,用于训练过程中的迭代更新,而 batch 是整个训练数据集的一次性处理。选择使用 mini-batch 还是 batch 取决于数据集的大小、计算资源的限制以及训练的效率要求。模型使用每个 mini-batch 的样本来进行前向传播、计算损失和反向传播,然后根据这些样本的梯度更新模型的参数。相比于 mini-batch,使用 batch 的训练过程可能会占用更多的内存和计算资源,因为需要同时处理整个数据集。mini-batch 和 batch 的。
2023-11-11 16:40:41 178 1
原创 13-Diverse Embedding Expansion Network and Low-Light Cross-Modality Benchmark for VIReID
不同嵌入扩展网络和低光交叉模态基准的可见红外人再识别2023-CVPR CCF-A类有代码。
2023-11-10 21:45:21 1282 1
原创 02-Cross-Modality Transformer for Visible-Infrared Person第一篇用跨模态transformer实现VI-ReID
在本文中,我们提出了一种新的跨模态转换器(Cross-Modality Transformer, CMT)来共同探索VIREID的模态级对齐模块和实例级模块。所提出的模态级对齐模块能够通过Transformer编码器-解码器体系结构补偿模态特定信息的缺失。我们还设计了实例级对齐模块,通过查询自适应特征调制实现样本特征的自适应调整。在两个标准基准上的大量实验结果表明,我们的模型优于最先进的方法.
2023-10-27 18:11:51 500 1
原创 01-Progressive Attribute Embedding for Accurate Cross-modality Person Re-ID
Progressive Attribute Embedding for Accurate Cross-modality Person Re-ID(用于准确的渐进属性嵌入的跨模态行人重识别)
2023-10-25 19:45:00 173 1
原创 JavaScript高级编程与框架-小白学习之路01
进阶网站:菜鸟教程:http://www.runoob.com/w3school:http://www.w3school.com.cn/js/index.aspJQuery入门1.什么是JQuery?-JQuery是一款跨浏览器的开源JavaScript库。-优势:轻量级,简洁,全面,强大选择器。-版本:JQuery1.x:兼容IE6/7/8,官方只做BUG维护;JQuery2.x:...
2019-03-10 16:40:39 155
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人