resnet基础网络知识

网络结构讲解
Identity Block
是Resnet的一种重要的基本构建单元,为了实现深层次网络的有效训练,同时避免梯度消失或信息丢失的问题。
特点:输入和输出维度相同,可以串联,主要用于加深网络层数 ;
结构:
1.卷积层 (Convolutional Layer):通常包含两个或三个卷积层(一般使用 3x3 的卷积核),每个卷积层后面通常会跟随批归一化(Batch Normalization)和 ReLU 激活函数。
2.跳跃连接 (Skip Connection):输入信号直接绕过卷积层,经过一个线性变换(如卷积)与卷积层的输出相加。这种连接方式允许梯度在反向传播时流动得更顺畅,从而帮助网络在更新权重时更有效。
3.激活函数:在输出层之后,通常会有一个 ReLU 激活函数,以引入非线性
在这里插入图片描述
数学表达:
假设输入为 X,经过 Identity Block 的一系列卷积操作后,输出为F(X)。最终的输出可以表示为:Y=F(x)+X
其中Y 是 Identity Block 的最终输出,你可以看到,输入 XX直接与卷积层的输出相加,形成最终输出 Y。
这种设计使得网络可以选择性地学习哪些特征需要被增强或减弱。

图片输入通道变化的举例说明:
假设我们有一个简单的卷积神经网络:
输入层:输入图像大小为 224x224,3 个通道(RGB)。
第一卷积层:使用 64 个 3x3 的卷积核,输出特征图大小为 224x224,64 个通道。
第二卷积层:使用 128 个 3x3 的卷积核,输出特征图大小为 224x224,128 个通道。
全连接层:将卷积层的输出展平后连接到一个全连接层,最终输出分类结果。
例子中,第一卷积层的输出有 64 个通道,第二卷积层的输出有 128 个通道。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值