免费ai换脸,rope一键整合包,使用教程

本文介绍了Rope的免费开源AI一键换脸工具,包括依赖软件如Python、ffmpeg和CUDA的安装,传统手动安装步骤的繁琐,以及AiStarter提供的全自动安装解决方案。详细指导了如何使用Rope进行视频换脸,包括文件夹设置和操作界面的使用流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

熊友们,今天给大家制作Rope 免费开源的AI一键换脸安装和使用教程

Rope 免费开源的AI一键换脸安装和使用教程-Rope free and open source AI one-click face-changing...

一、 依赖软件安装

1、安装python3.10.6
https://www.python.org/downloads/rele...
2、安装ffmpeg
(1)命令窗口用安装指令
winget install -e --id Gyan.FFmpeg
(2)下载压缩包手动配置
https://www.gyan.dev/ffmpeg/builds/
3、Nvidia显卡安装CUDA11.8
https://developer.nvidia.com/cuda-11-...

二、 Rope安装

(1)下载Rope压缩包
https://github.com/Hillobar/Rope
(2)创建虚拟环境
python -m venv venv
(3)激虚拟环境
call venvscriptsactivate.bat
(4)安装依赖包
pip install -r requirements.txt
(5)下载换脸模型
https://github.com/Hillobar/Rope/wiki

三、 Rope.bat一键运行
  • 以上是传统的手动安装过程,不仅复杂而且容易出错,涉及网络设置、命令输入、虚拟环境配置等多个环节,往往让人感到繁琐且耗时。
四、AiStarter全自动安装
  • AiStarter,这一切都变得简单。只需简单的三步:点击‘下载’,完成‘安装’,然后‘启动’。就是这么简单,一切复杂的过程都被AiStarter智能化地解决了。我相信,每一位热爱AI的朋友都应该把时间花在真正的创造上,而不是繁琐的安装过程。
五、功能介绍

点击启动就能一键运行进入Rope的操作界面

要使用Rope进行视频换脸

首先我们要准备好三个文件夹(用英文命名文件夹,不要有中文路径)

先新建一个文件夹

就命名为face文件夹

这个文件夹里存放的是换脸照片

再新建一个文件夹起名为video

把要换脸的视频都放在里面

最后新建一个out文件夹

保存换脸后的视频

文件夹准备好以后

我们回到Rope操作界面

第一步点击源人脸

设置换脸照片对应的face文件夹

第二步点击目标视频

设置目标视频对应的video文件夹

选好以后它会自动载入文件夹中的所有视频文件

第三步点击保存路径

设置视频输出out的保存目录

最后我们点击底部的加载模型和文件

他就会把所有换脸的照片也载入到界面里

这些设置好以后程序就会记住

下次运行时就不需要再设置一遍了

后续如果有新的换脸照片或者新的视频,直接放到对应的文件夹内

然后点击加载模型和文件就可以了

接下来选择一个

要换脸的视频

顶部这里就能显示出该视频

我们可以拖动进度条来进行快速预览

然后点击Find(检测人脸)

它就会自动识别出视频里的人脸

再选择识别出的人脸

然后选择一张换脸照片

最后点击Swap(应用换脸)按钮

这时预览里就能实时显示出换脸后的效果了

不过现在只是预览

要进行换脸操作

必须要点击这个圆圈按钮

再点击三角按钮

就开始真正的替换了

视频播放完换脸的操作也就完成了

我们可以在视频输出out文件夹里

找到替换后的视频

可以看一下效果

人脸不太清晰

因为没有开启高清化处理

我们开启高清化处理,明显就清晰了很多

好了,先附上一张翻译的图片给大家参考,中文就很容易理解,相关的参数自行测试研究哈,实时预览就可以看到效果

Rope 免费开源的AI一键换脸安装和使用教程

后面我也会安排汉化成中文的,现目前主要还是集中精力在完善AiStarter主要功能,目前进展顺利,2023年12月底发布倒计时啦,感谢支持,愿意内测的熊友们私信我哈,再见,我们下个视频再见。

### DeepFaceLive DFM人模型下载与使用教程 #### 下载DFM格式的人模型文件 为了获取适用于DeepFaceLive的DFM人模型,可以从多个渠道获得这些资源。例如,“大众美女直播丹”的DFM模型可以直接用于DeepFaceLive,并且只需将其放置在指定路径下即可立即投入使用[^3]。 对于更高质量的需求,可以考虑像“刘亦菲320高清直播dfm模型_SAEHD_model”,该模型以其高分辨率和优秀的效果著称,在实际应用中能够提供更好的视觉体验。此模型可通过特定链接进行下载[^4]。 #### 安装过程概述 一旦选择了合适的DFM模型并完成下载之后,按照标准流程操作可确保顺利集成至DeepFaceLive环境中: - **准备阶段**:先将所选中的DFM模型保存到本地计算机上; - 将上述已下载好的模型文件移入`DeepFaceLab\workspace\model`目录内作为初步处理步骤的一部分; - 接着再把相同的一份副本转移到`DeepFaceLive/userdata/dfm_models`位置以便于后续调用; - 启动DeepFaceLive应用程序后,在设置选项里找到对应入口来加载新加入的部数据集; 当一切配置完成后,用户便可以在实时预览窗口看到预期的效果变化了[^1]。 #### 实际应用场景说明 除了基本的操作指南外,还有专门针对不同场景优化过的指导材料可供参考。比如《Rope DFM一键整合AI教程》就详细描述了一个完整的从环境搭建到最后成品展示的过程。其中特别强调了一旦启动程序并且成功连接摄像设备以后,应该怎样正确选取含有之前导入过的目标面部特征集合的位置——即指向存放所有可用DFM文件的那个子文件夹(`dfl_models`)来进行下一步的选择工作[^2]。 ```python import os def move_dfm_to_target(source_path, target_paths): """ 移动DFM文件到目标路径 参数: source_path (str): 源DFM文件所在路径. target_paths (list of str): 目标路径列表. 返回: None """ for path in target_paths: try: os.makedirs(path, exist_ok=True) files = os.listdir(source_path) dfm_files = [f for f in files if f.endswith('.dfm')] for file_name in dfm_files: full_file_name = os.path.join(source_path, file_name) if os.path.isfile(full_file_name): shutil.copy(full_file_name, path) print(f"Files moved to {path}") except Exception as e: print(e) source_directory = "path/to/downloaded/models" target_directories = ["DeepFaceLab/workspace/model", "DeepFaceLive/userdata/dfm_models"] move_dfm_to_target(source_directory, target_directories) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值