医学图像的 AI 框架 MONAI 详细教程(一)

本文是关于医学图像处理框架MONAI的详细教程,介绍了如何使用MONAI进行MedMNIST数据集的分类任务,包括安装步骤、数据预处理、网络模型构建和训练测试过程。MONAI提供了针对医学图像的特有功能和API,便于模型开发和部署。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

  • 前言
  • 安装步骤
  • 基于 MONAI 的 MedMNIST 数据集分类任务
    • 导入依赖
    • 下载数据
    • 读取图像信息
    • MONAI transforms
    • 定义 Dataset、网络和优化器
    • 训练
    • 测试
  • 总结
  • 参考链接

前言

最近在读 CVPR 2023 上和医学图像方向相关的论文,发现其中的 Label-Free Liver Tumor Segmentation 这篇论文使用了 MONAI 这个框架。之前关注过的一些医学图像的期刊论文上,也有 MONAI 的出现,加之前的导师有过推荐,所以了解学习了下。简单检索后,发现网上关于 MONAI 的中文教程还没有,后面会有一系列的很详细的关于 MONAI 的教程,都会在 GiantPandaCV 上发布。

MONAI 主要有三个主要的仓库,MONAI Core、MONAI Label 和 MONAI Deploy(SDK),分别用在模型训练、医学图像打标签和模型部署上,后面我们会一一介绍。地址分别如下:

  • https://github.com/Project-MONAI/MONAI
  • https://github.com/Project-MONAI/MONAILa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值