题目描述
给定一个表示分数加减运算表达式的字符串,你需要返回一个字符串形式的计算结果。 这个结果应该是不可约分的分数,即最简分数。 如果最终结果是一个整数,例如 2,你需要将它转换成分数形式,其分母为 1。所以在上述例子中, 2 应该被转换为 2/1。
示例 1:
输入:"-1/2+1/2"
输出: “0/1”
示例 2:
输入:"-1/2+1/2+1/3"
输出: “1/3”
示例 3:
输入:“1/3-1/2”
输出: “-1/6”
示例 4:
输入:“5/3+1/3”
输出: “2/1”
说明:
输入和输出字符串只包含 ‘0’ 到 ‘9’ 的数字,以及 ‘/’, ‘+’ 和 ‘-’。
输入和输出分数格式均为 ±分子/分母。如果输入的第一个分数或者输出的分数是正数,则 ‘+’ 会被省略掉。
输入只包含合法的最简分数,每个分数的分子与分母的范围是 [1,10]。 如果分母是1,意味着这个分数实际上是一个整数。
输入的分数个数范围是 [1,10]。
最终结果的分子与分母保证是 32 位整数范围内的有效整数。
解题思路:
该问题首先需要考虑结果输出形式,由于要求输出字符串形式,因此如果我们需要保证只对分子分母通分化简但不计算结果(计算结果会出小数无法转换成分数),因此需要最好的方法是通分,分别求分子与分母的值,然后再判断结果是否为0,以及分子分母是否可以约分的情况,这里采用的是通过判断符号分别截取分子、分母以及符号进行储存(第一个分数为负的话不存储该符号,设标志key为1,最后运算时加上即可),再分别计算分子和分母通分结果,其中通分后的多个分子按照符号存储顺序进行加减,分母直接相乘即可。若分子和为0,则分母赋值为1,直接输出;若分子分母可约分,计算最大公约数除去即可;若不可约分直接输出即可。(注意,如果分子为负可能导致最大公约数结果为负,从而使符号位置出现在分母前面,可整除公约数绝对值,也可对分子分母积进行判断,重新设置正负值即可)
源代码
class Solution:
def fractionAddition(self, expression: str) -> str:
len1=len2=0
fzs=[]
fms=[]
fhs=[]
key=0
for i in expression:
if i=='/':
fzs.append(expression[len1:len2])
len1=len2+1
if i=='+' or i=='-':
if len2 == 0:
key=1
len1+=1
else:
fhs.append(i)
fms.append(expression[len1:len2])
len1 = len2+1
len2+=1
if len2 == len(expression)-1:
fms.append(expression[len1:])
for j in range(len(fzs)):
for k in range(len(fms)):
if j!=k:
fzs[j]=str(int(fzs[j])*int(fms[k]))
fz=int(fzs[0])
fm=1
for i in range(len(fms)):
fm=fm*int(fms[i])
if key==1:
fz=-fz
for i in range(len(fhs)):
if fhs[i] == '+' :
fz = fz + int(fzs[i+1])
if fhs[i] == '-' :
fz=fz-int(fzs[i+1])
x=fz
y=fm
if x!=0:
while y%x:
x,y=y%x,x
fz=fz//x
fm=fm//x
else: fm=1
if fz*fm<0:
fz=-abs(fz)
fm=abs(fm)
return str(fz)+'/'+str(fm)
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/fraction-addition-and-subtraction
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。