SFTGAN论文学习笔记

“Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform”发表于CVPR 2018
作者论文、补充材料、数据集及代码地址:http://mmlab.ie.cuhk.edu.hk/projects/SFTGAN/

这篇论文提出了使用先验类别信息来解决超分辨率纹理不真实的问题 ,就是在超分辨率的合成中使用语义图,语义图的生成使用了图像分割网络。文章探讨了不同分辨率下的语义分割的误差,比较后发现其实在高低分辨率图像对于分割的精度影响不大。

SFTGAN网络结构
在这里插入图片描述在这里插入图片描述网络定义部分代码:


class SFTLayer(nn.Module):
    def __init__(self):
        super(SFTLayer, self).__init__()
        self.SFT_scale_conv0 = nn.Conv2d(32, 32, 1)
        self.SFT_scale_conv1 = nn.Conv2d(32, 64, 1)
        self.SFT_shift_conv0 = nn.Conv2d(32, 32, 1)
        self.SFT_shift_conv1 = nn.Conv2d(32, 64, 1)

    def forward(self, x):
        # x[0]: fea; x[1]: cond
        scale = self.SFT_scale_conv1(F.leaky_relu(self.SFT_scale_conv0(x[1]), 0.1, inplace=True)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值