CVPR2020所有论文:https://openaccess.thecvf.com/CVPR2020
1.Investigating Loss Functions for Extreme Super-Resolution
NTIRE2020极限超分亚军方案,出自CIPLab。LPIPS指标亚军,PI指标冠军。官方的评测指标是LPIPS,所以屈居亚军。
以往的超分辨方法主要是做4倍超分,很少一部分工作是16倍超分的。
problem
The general approach for perceptual ×4 SR is using GAN with VGG based perceptual loss, however, we found that it creates inconsistent details for perceptual ×16 SR
solution
Use GAN with LPIPS [23] loss for perceptual extreme SR.
Use U-net structure discriminator [14] together to consider both the global and local context of an input image.
2.Perceptual Extreme Super Resolution Network with Receptive Field Block
RFB-ESRGAN:NTIRE2020冠军方案RFB-ESRGAN,带感受野模块的超分网络。同上文一样,也是解决16倍超分问题
problem
Perceptual Extreme Super-Resolution for single image is extremely difficult, because the texture details of di