Perceptual Loss(感知损失)论文笔记

“Perceptual Losses for Real-Time Style Transfer and Super-Resolution”论文出自斯坦福大学李飞飞团队,发表于ECCV 2016

论文地址:https://arxiv.org/abs/1603.08155
补充材料地址:https://cs.stanford.edu/people/jcjohns/papers/eccv16/JohnsonECCV16Supplementary.pdf

简介

图像转换问题(image transformation tasks),输入一副图像转换成另一幅图像输出。现有方法来解决的图像转换问题,往往以监督训练的方式,训练一个前向传播的网络,利用的就是图像像素级之间的误差。这种方法在测试的时候非常有效,因为仅仅需要一次前向传播即可。但是,像素级的误差没有捕获输出和ground-truth图像之间的感知区别(perceptual differences)。

最近的研究工作表明,高质量的图像可以通过定义和优化perceptual loss函数来生成,该损失函数基于使用预训练好的网络提供的高层的特征。

本文中,我们将两者的优势进行结合,训练一个前向传播的网络进行图像转换的任务,但是不用 pixel-level loss function,而采用 perceptual loss function。在训练的过程中,感知误差衡量了图像之间的相

感知损失是一种用于深度学习中的损失函数,它被用于衡量生成模型生成的结果与真实数据之间的差异。传统的损失函数通常是基于像素级别的比较,而感知损失则以人类感知的方式来衡量生成结果的质量。 感知损失的核心思想是将生成结果与真实数据在感知空间中进行比较,而不是直接比较像素值。为了实现这一点,通常会使用预训练的卷积神经网络(如VGG网络)将生成结果和真实数据在中间层进行特征提取,然后比较提取到的特征。 通过使用感知损失,生成模型可以更好地学习到图像的语义信息,而不仅仅是基于像素级别的细节。例如,在图像生成任务中,生成模型可以学习到物体的形状、纹理、风格等重要特征。这样一来,生成的结果更加真实、逼真,更符合人类感知感知损失的另一个优点是它可以减少传统像素级损失函数中的一些问题。例如,传统的损失函数容易受到噪声干扰和图片变形的影响,而感知损失则更加稳健,能够忽略一些无关的细节。此外,感知损失也可以帮助解决"模式崩溃"现象,即生成模型在处理复杂图像时容易产生的一些重复或不合理的模式。 综上所述,感知损失在深度学习中起到了关键作用,它通过以人的感知方式来衡量生成结果的质量,提高了生成模型的性能和输出质量。这使得感知损失成为了许多图像生成任务的重要组成部分。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值