文章发表于CVPR 2019
论文地址:http://arxiv.org/abs/1904.03377
目前绝大部分图像超分辨率算法,假设图像退化(LR图像获得)过程中的下采样模糊核是预先定义或已知的,如bicubic下采样,这类算法在应用于实际应用时,如果模糊核是复杂或未知时,图像超分辨效果会大大降低。文中,提出了Iterative Kernel Correction(IKC)迭代核校正算法用于盲图像超分辨率问题的模糊核估计,此外,作者还提出了一有效的图像超分辨网络结构SFTMD,使用spatial feature transform (SFT)空间特征转换层来处理不同模糊核。
Blind Super-Resolution:盲超分辨,假设图像的退化核函数是未知的。其问题公式化定义如下:
图像超分辨问题,在模糊核不匹配时,SR效果会造成过于模糊或产生振铃效应的后果,只有在模糊核匹配时,才会有较好的图像超分辨效果,如下图,右上部分过模糊,左下部分振铃效应,对角线上是较好的图像超分辨效果。
为了正确估计出模糊核,提出校正函数C
<