网络流基础概念+三个基本算法

容量网络:设G(V,E),是一个有向网络,在V中指定了一个顶点,称为源点(记为Vs),以及另一个顶点,称为汇点(记为Vt);对于每一条弧<u,v>属于E,对应有一个权值c(u,v)>0,称为弧的容量.通常吧这样的有向网络G称为容量网络.

弧的流量:通过容量网络G中每条弧<u,v>,上的实际流量(简称流量),记为f(u,v);

网络流:所有弧上流量的集合f={f(u,v)},称为该容量网络的一个网络流.

可行流:在容量网络G中满足以下条件的网络流f,称为可行流.


    a.弧流量限制条件:   0<=f(u,v)<=c(u,v);

    b:平衡条件:即流入一个点的流量要等于流出这个点的流量,(源点和汇点除外).

若网络流上每条弧上的流量都为0,则该网络流称为零流.

伪流:如果一个网络流只满足弧流量限制条件,不满足平衡条件,则这种网络流为伪流,或称为容量可行流.(预流推进算法有用)

最大流:在容量网络中,满足弧流量限制条件,且满足平衡条件并且具有最大流量的可行流,称为网络最大流,简称最大流.

弧的类型:

a.饱和弧:即f(u,v)=c(u,v);

b.非饱和弧:即f(u,v)<c(u,v);

c.零流弧:即f(u,v)=0;

d.非零流弧:即f(u,v)>0.

:在容量网络中,称顶点序列(u1,u2,u3,u4,..,un,v)为一条链要求相邻的两个顶点之间有一条弧.

设P是G中一条从Vs到Vt的链,约定从Vs指向Vt的方向为正方向.在链中并不要求所有的弧的方向都与链的方向相同.

a.前向弧:(方向与链的正方向一致的弧),其集合记为P+,

b.后向弧:(方向与链的正方向相反的弧),其集合记为P-.

增广路:

设f是一个容量网络G中的一个可行流,P是从Vs到Vt 的一条链,若P满足以下条件:

a.P中所有前向弧都是非饱和弧,

b.P中所有后向弧都是非零弧.

则称P为关于可行流f 的一条增广路.

沿这增广路改进可行流的操作称为增广.

残留容量:给定容量网络G(V,E),及可行流f,弧<u,v>上的残留容量记为cl(u,v)=c(u,v)-f(u,v).每条弧上的残留容量表示这条弧上可以增加的流量.因为从顶点u到顶点v的流量减少,等效与从顶点v到顶点u的流量增加,所以每条弧<u,v>上还有一个反方向的残留容量cl(v,u)=-f(u,v).

残留网络:设有容量网络G(V,E)及其上的网络流f,G关于f的残留网络记为G(V',E').其中G'的顶点集V'和G中顶点集G相同,V'=V.对于G中任何一条弧<u,v>,如果f(u,v)<c(u,v),那么在G'中有一条弧<u,v>属于E',其容量为c'(u,v)=c(u,v)-f(u,v),如果f(u,v)>0,则在G'中有一条弧<v,u>属于E',其容量为c'(v,u)=f(u,v).残留网络也称为剩余网络.


下面是所有最大流算法的精华部分:引入反向边
为什么要有反向边呢?


我们第一次找到了1-2-3-4这条增广路,这条路上的delta值显然是1。于是我们修改后得到了下面这个流。(图中的数字是容量)

这时候(1,2)和(3,4)边上的流量都等于容量了,我们再也找不到其他的增广路了,当前的流量是1。

但这个答案明显不是最大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流。

那么我们刚刚的算法问题在哪里呢?问题就在于我们没有给程序一个”后悔”的机会,应该有一个不走(2-3-4)而改走(2-4)的机制。那么如何解决这个问题呢?回溯搜索吗?那么我们的效率就上升到指数级了。

而这个算法神奇的利用了一个叫做反向边的概念来解决这个问题。即每条边(I,j)都有一条反向边(j,i),反向边也同样有它的容量。

我们直接来看它是如何解决的:

在第一次找到增广路之后,在把路上每一段的容量减少delta的同时,也把每一段上的反方向的容量增加delta。即在Dec(c[x,y],delta)的同时,inc(c[y,x],delta)

我们来看刚才的例子,在找到1-2-3-4这条增广路之后,把容量修改成如下

这时再找增广路的时候,就会找到1-3-2-4这条可增广量,即delta值为1的可增广路。将这条路增广之后,得到了最大流2。

那么,这么做为什么会是对的呢?我来通俗的解释一下吧。

事实上,当我们第二次的增广路走3-2这条反向边的时候,就相当于把2-3这条正向边已经是用了的流量给”退”了回去,不走2-3这条路,而改走从2点出发的其他的路也就是2-4。(有人问如果这里没有2-4怎么办,这时假如没有2-4这条路的话,最终这条增广路也不会存在,因为他根本不能走到汇点)同时本来在3-4上的流量由1-3-4这条路来”接管”。而最终2-3这条路正向流量1,反向流量1,等于没有流量。

这就是这个算法的精华部分,利用反向边,使程序有了一个后悔和改正的机会。

下面介绍第一个方法: EK(Edmond—Karp)算法

#include <iostream>
#include <queue>
#include<string.h>
using namespace std;
#define arraysize 201
int maxData = 0x7fffffff;
int capacity[arraysize][arraysize]; //记录残留网络的容量
int flow[arraysize];                //标记从源点到当前节点实际还剩多少流量可用
int pre[arraysize];                 //标记在这条路径上当前节点的前驱,同时标记该节点是否在队列中
int n,m;
queue<int> myqueue;
int BFS(int src,int des)
{
    int i,j;
    while(!myqueue.empty())       //队列清空
        myqueue.pop();
    for(i=1;i<m+1;++i)
    {
        pre[i]=-1;
    }
    pre[src]=0;
    flow[src]= maxData;
    myqueue.push(src);
    while(!myqueue.empty())
    {
        int index = myqueue.front();
        myqueue.pop();
        if(index == des)            //找到了增广路径
            break;
        for(i=1;i<m+1;++i)
        {
            if(i!=src && capacity[index][i]>0 && pre[i]==-1)
            {
                 pre[i] = index; //记录前驱
                 flow[i] = min(capacity[index][i],flow[index]);   //关键:迭代的找到增量
                 myqueue.push(i);
            }
        }
    }
    if(pre[des]==-1)      //残留图中不再存在增广路径
        return -1;
    else
        return flow[des];
}
int maxFlow(int src,int des)
{
    int increasement= 0;
    int sumflow = 0;
    while((increasement=BFS(src,des))!=-1)
    {
         int k = des;          //利用前驱寻找路径
         while(k!=src)
         {
              int last = pre[k];
              capacity[last][k] -= increasement; //改变正向边的容量
              capacity[k][last] += increasement; //改变反向边的容量
              k = last;
         }
         sumflow += increasement;
    }
    return sumflow;
}
int main()
{
    int i,j;
    int start,end,ci;
    while(cin>>n>>m)
    {
        memset(capacity,0,sizeof(capacity));
        memset(flow,0,sizeof(flow));
        for(i=0;i<n;++i)
        {
            cin>>start>>end>>ci;
            if(start == end)               //考虑起点终点相同的情况
               continue;
            capacity[start][end] +=ci;     //此处注意可能出现多条同一起点终点的情况
        }
        cout<<maxFlow(1,m)<<endl;
    }
    return 0;
}

EK算法的核心
反复寻找源点s到汇点t之间的增广路径,若有,找出增广路径上每一段[容量-流量]的最小值delta,若无,则结束。
在寻找增广路径时,可以用BFS来找,并且更新残留网络的值(涉及到反向边)。
而找到delta后,则使最大流值加上delta,更新为当前的最大流值。

对于BFS找增广路:

1.         flow[1]=INF,pre[1]=0;

        源点1进队列,开始找增广路,capacity[1][2]=40>0,则flow[2]=min(flow[1],40)=40;

        capacity[1][4]=20>0,则flow[4]=min(flow[1],20)=20;

        capacity[2][3]=30>0,则flow[3]=min(folw[2]=40,30)=30;

        capacity[2][4]=30,但是pre[4]=1(已经在capacity[1][4]这遍历过4号点了)

        capacity[3][4].....

        当index=4(汇点),结束增广路的寻找

        传递回increasement(该路径的流),利用前驱pre寻找路径

路径也自然变成了这样:

2.flow[1]=INF,pre[1]=0;

 源点1进队列,开始找增广路,capacity[1][2]=40>0,则flow[2]=min(flow[1],40)=40;

        capacity[1][4]=0!>0,跳过

        capacity[2][3]=30>0,则flow[3]=min(folw[2]=40,30)=30;

        capacity[2][4]=30,pre[4]=2,则flow[2][4]=min(flow[2]=40,20)=20;

        capacity[3][4].....

        当index=4(汇点),结束增广路的寻找

        传递回increasement(该路径的流),利用前驱pre寻找路径

 图也被改成

接下来同理

这就是最终完成的图,最终sumflow=20+20+10=50(这个就是最大流的值)。

下面介绍第二个方法:Ford-Fulkerson算法

基于邻接矩阵的一个模板

#include <iostream>
#include <algorithm>
#include <math.h>
#include <string>
#include <string.h>
#include <stdio.h>
#include <vector>
const int maxx=1010;
const int inf=0x3f3f3f3f;
using namespace std;
int mapp[maxx][maxx];
int used[maxx];
int n,m;
int dfs(int u,int t,int f)
{
    if(u==t) return f;
    for(int i=1; i<=m; i++)
    {
        if(mapp[u][i]>0 && !used[i])
        {
             used[i]=1;
             int d=dfs(i,t,min(f,mapp[u][i]));
             if(d>0)
             {
                 mapp[u][i]-=d;
                 mapp[i][u]+=d;
                 return d;
             }
        }
    }
}
int maxflow(int u,int t)
{
    int flow=0;
    while(1)
    {
        memset(used,0,sizeof(used));
        int f=dfs(u,t,inf);//不断找从s到t的增广路
        if(f==0) return flow;//找不到了就回去
        flow+=f;//找到一个流量f的路
    }
}
int main()
{
    int start,end,ci;
    while(~scanf("%d%d",&n,&m))
    {
        memset(mapp,0,sizeof(mapp));
        for(int i=0;i<n;i++)
        {
            scanf("%d%d%d",&start,&end,&ci);
            mapp[start][end]+=ci;
        }
        printf("%d\n",maxflow(1,m));
    }
    return 0;
}

 

下面介绍第三个方法:Dinic算法,可以看作是两种方法的结合体,它进行了一定的优化,对于某些横边多的图,运行速度方面得到了大幅提升。

Dinic算法的基本思路:
       根据残量网络计算层次图。
       在层次图中使用DFS进行增广直到不存在增广路

       重复以上步骤直到无法增广

层次图:分层图,以[从原点到某点的最短距离]分层的图,距离相等的为一层,(比如上图的分层为{1},{2,4},{3})
       观察前面的dfs算法,对于层次相同的边,会经过多次重复运算,很浪费时间,那么,可以考虑先对原图分好层产生新的层次图,即保存了每个点的层次,注意,很多人会把这里的边的最大容量跟以前算最短路时的那个权值混淆,其实这里每个点之间的距离都可以看作单位距离,然后对新图进行dfs,这时的dfs就非常有层次感,有筛选感了,同层次的点不可能在同一跳路径中,直接排除。那么运行速度就会快很多了。

#include <cstdio>
#include <string.h>
#include <queue>
using namespace std;
int const inf = 0x3f3f3f3f;
int const MAX = 205;
int n, m;
int c[MAX][MAX], dep[MAX];//dep[MAX]代表当前层数
 
int bfs(int s, int t)//重新建图,按层次建图
{
    queue<int> q;
    while(!q.empty())
        q.pop();
    memset(dep, -1, sizeof(dep));
    dep[s] = 0;
    q.push(s);
    while(!q.empty()){
        int u = q.front();
        q.pop();
        for(int v = 1; v <= m; v++){
            if(c[u][v] > 0 && dep[v] == -1){//如果可以到达且还没有访问,可以到达的条件是剩余容量大于0,没有访问的条件是当前层数还未知
                dep[v] = dep[u] + 1;
                q.push(v);
            }
        }
    }
    return dep[t] != -1;
}
 
int dfs(int u, int mi, int t)//查找路径上的最小流量
{
    if(u == t)
        return mi;
    int tmp;
    for(int v = 1; v <= m; v++){
        if(c[u][v] > 0 && dep[v] == dep[u] + 1  && (tmp = dfs(v, min(mi, c[u][v]), t))){
            c[u][v] -= tmp;
            c[v][u] += tmp;
            return tmp;
        }
    }
    return 0;
}
 
int dinic()
{
    int ans = 0, tmp;
    while(bfs(1, m)){
        while(1){
            tmp = dfs(1, inf, m);
            if(tmp == 0)
                break;
            ans += tmp;
        }
    }
    return ans;
}
 
int main()
{
    while(~scanf("%d %d", &n, &m)){
        memset(c, 0, sizeof(c));
        int u, v, w;
        while(n--){
            scanf("%d %d %d", &u, &v, &w);
            c[u][v] += w;
        }
        printf("%d\n", dinic());
    }
    return 0;
}


 

  • 3
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值