马蜂窝ABTest多层分流系统的设计与实现

本文介绍了马蜂窝ABTest系统的设计与实现,基于Openresty实现多层分流,确保流量的科学分配。通过MurmurHash算法保障稳定分流,采用多级缓存策略保证系统稳定性。系统支持全平台,具备高吞吐量和低延迟特性,适用于大规模在线试验,助力数据驱动的产品优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是 ABTest

产品的改变不是由我们随便「拍脑袋」得出,而是需要由实际的数据驱动,让用户的反馈来指导我们如何更好地改善服务。正如马蜂窝 CEO 陈罡在接受专访时所说:「有些东西是需要 Sense,但大部分东西是可以用 Science 来做判断的。」

说到 ABTest 相信很多读者都不陌生。简单来说,ABTest 就是将用户分成不同的组,同时在线试验产品的不同版本,通过用户反馈的真实数据来找出采用哪一个版本方案更好的过程。

我们将原始版本作为对照组,以每个版本进行尽量是小的流量迭代作为原则去使用 ABTest。一旦指标分析完成,用户反馈数据表现最佳的版本再去全量上线。

很多时候,一个按钮、一张图片或者一句文案的调整,可能都会带来非常明显的增长。这里分享一个ABTest 在马蜂窝的应用案例:

如图所示,之前我们交易中心的电商业务团队希望优化一个关于「滑雪」的搜索列表。可以看到优化之前的页面显示从感觉上是比较单薄的。但是大家又不确定复杂一些的展现形式会不会让用户觉得不够简洁,产生反感。因此,我们将改版前后的页面放在线上进行了 ABTest。最终的数据反馈表明,优化之后的样式 UV 提高了 15.21%,转化率提高了 11.83%。使用 ABTest 帮助我们降低了迭代的风险。

通过这个例子,我们可以更加直观地理解 ABTest 的几个特性:

  • 先验性:采用流量分割与小流量测试的方式,先让线上部分小流量用户使用,来验证我们的想法,再根据数据反馈来推广到全流量,减少产品损失。

  • 并行性:我们可以同时运行两个或两个以上版本的试验同时去对比,而且保证每个版本所处的环境一致的,这样以前整个季度才能确定要不要发版的情况,现在可能只需要一周的时间,避免流程复杂和周期长的问题,节省验证时间。

  • 科学性:统计试验结果的时候,ABTest 要求用统计的指标来判断这个结果是否可行,避免我们依靠经验主义去做决策。

为了让我们的验证结论更加准确、合理并且高效,我们参照 Google 的做法实现了一套算法保障机制,来严格实现流量的科学分配。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值