洛谷P5395 第二类斯特林数·行

题目

题目描述

第二类斯特林数 { n m } \begin{Bmatrix} n \\m \end{Bmatrix} {nm}表示把 n n n个不同元素划分成 m m m个相同的集合中(不能有空集)的方案数
给定 n n n,对于所有的整数 i ∈ [ 0 , n ] i\in[0,n] i[0,n],你要求出 { n i } \begin{Bmatrix} n \\i \end{Bmatrix} {ni}
由于答案会非常大,所以你的输出需要对 167772161 167772161 167772161 2 25 × 5 + 1 2^{25}\times 5+1 225×5+1,是一个质数)取模

输入格式

一行一个正整数 n n n,意义见题目描述

输出格式

共一行 n + 1 n+1 n+1个非负整数
你需要按顺序输出 { n 0 } , { n 1 } , { n 2 } , … , { n n } \begin{Bmatrix} n \\0 \end{Bmatrix},\begin{Bmatrix} n \\1 \end{Bmatrix},\begin{Bmatrix} n \\2 \end{Bmatrix},\dots,\begin{Bmatrix} n \\n \end{Bmatrix} {n0},{n1},{n2},,{nn}的值

样例

样例输入

3

样例输出

0 1 3 1

数据范围与提示

对于 20 % 20\% 20%的数据, n ⩽ 1000 n\leqslant 1000 n1000
对于 100 % 100\% 100%数据, 1 ⩽ n ⩽ 2 × 1 0 5 1\leqslant n\leqslant 2\times 10^5 1n2×105

题解

不会斯特林数的戳我
{ n m } = 1 m ! ∑ i = 0 m ( − 1 ) i ( m i ) ( m − i ) n = 1 m ! ∑ i = 0 m ( − 1 ) i m ! i ! ( m − i ) ! ( m − i ) n = ∑ i = 0 m ( − 1 ) i i ! ( m − i ) n ( m − i ) ! \begin{Bmatrix}n\\m\end{Bmatrix}=\frac{1}{m!}\sum \limits_{i=0}^m(-1)^i\binom{m}{i}(m-i)^n=\frac{1}{m!}\sum \limits_{i=0}^m(-1)^i\frac{m!}{i!(m-i)!}(m-i)^n=\sum \limits_{i=0}^m\frac{(-1)^i}{i!}\frac{(m-i)^n}{(m-i)!} {nm}=m!1i=0m(1)i(im)(mi)n=m!1i=0m(1)ii!(mi)!m!(mi)n=i=0mi!(1)i(mi)!(mi)n
看,这是什么?是不是一个漂亮的卷积式?
还没看出来?设 f ( x ) = ∑ i ⩾ 0 ( − 1 ) i i ! x i , g ( x ) = ∑ i ⩾ 0 i n i ! x i f(x)=\sum \limits_{i\geqslant 0} \frac{(-1)^i}{i!}x^i,g(x)=\sum\limits_{i\geqslant 0}\frac{i^n}{i!}x^i f(x)=i0i!(1)ixi,g(x)=i0i!inxi,则 { n m } \begin{Bmatrix}n\\m\end{Bmatrix} {nm}就是 f ( x ) f(x) f(x) g ( x ) g(x) g(x)的卷积
所以,我们就可以愉快地使用逆天塔(NTT)了!
附上代码:

#include<algorithm>
#include<iostream>
#include<cstring>
using namespace std;
const int mod=167772161,g=3;
int n,len=1,ln,r[800010],cj[800010],a[800010],b[800010];
int POW(int a,int b)
{
    int ans=1;
    for(;b;b>>=1){
        if(b&1) ans=1ll*ans*a%mod;
        a=1ll*a*a%mod;
	}
    return ans;
}
void NTT(int *a,int flag)
{
    for(int i=0;i<len;i++) if(i<r[i]) swap(a[i],a[r[i]]);
    for(int k=1;k<len;k<<=1) for (int i=0,w1=POW(g,(mod-1)/(k<<1));i<len;i+=(k<<1)) for(int j=0,w=1;j<k;j++,w=1ll*w*w1%mod){
        int x=a[i+j],y=1ll*w*a[i+j+k]%mod;
        a[i+j]=(x+y)%mod,a[i+j+k]=(x-y+mod)%mod;
	}
    if(flag==-1){
        a[0]=1ll*a[0]*POW(len,mod-2)%mod;
        for(int i=1,inv=POW(len,mod-2);i<=len/2;i++){
            a[i]=1ll*a[i]*inv%mod;
            if(i!=len-i) a[len-i]=1ll*a[len-i]*inv%mod;
            swap(a[i],a[len-i]);
        }
    }
}
int main()
{
    cin>>n,n++,cj[0]=cj[1]=1;
    for(int i=2;i<n;i++) cj[i]=(mod-1ll*(mod/i)*cj[mod%i]%mod)%mod;
    for(int i=1;i<n;i++) cj[i]=1ll*cj[i-1]*cj[i]%mod;
    for(int i=0,f=1;i<n;f=mod-f,i++) a[i]=1ll*f*cj[i]%mod,b[i]=1ll*POW(i,n-1)*cj[i]%mod;
    while(len<=(n<<1)) len<<=1,ln++;
    for(int i=0;i<len;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(ln-1));
    NTT(a,1),NTT(b,1);
    for(int i=0;i<len;i++) a[i]=1ll*a[i]*b[i]%mod;
    NTT(a,-1);
    for(int i=0;i<n;i++) cout<<a[i]<<" ";
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值