前面研究的都是用户下单后的行为,是基于已经生成的订单数据,接下来几篇文章将把重点放在下单之前的用户行为分析。
数据来源于 Season 1 of Ali Mobile Recommendation Algorithm Competition
是一份跨期1个月且经过脱敏处理的淘宝用户行为数据,共1225 6906行,6个字段如下,主要涉及用户click, collect,add-to-cart , payment等4个行为。
关于本数据的分析,暂定思路是这样的:
-
基本指标计算:GMV&SKU、PV&UV分析(折线图)、 付费率分析、流失/回购分析等
3/17完成:参考链接:用户行为分析(二):基本统计指标可视化展示 -
各环节转化分析(点击、加购、收藏、购买并不是一个线性过程,也不是一个一次性过程,普通的漏斗图可能用不了)
3/18完成:参考链接: