前面对于用户的研究,多是基于数据挖掘的角度,利用模型或算法,尝试挖掘数据更深层次的信息。
这篇文章将从数据分析的另一个视角,以指标聚合计算、图形可视化等非建模的方式,来描述一份数据,并以仪表盘的形式呈现出来。
源数据是一份零售电商销售明细,跨度 3 个月, items 数 25 万+,涉及10681名用户,10780件商品。
主要工具为tableau,考虑从销售情况、订单周期、用户价值、商品价值、用户留存和商品动销 6 个维度,进行可视化分析。
最终仪表盘已上传至tableau public,下面就来解释一下。
1.总体结构
仪表盘有6个界面,分别对应此前提到的6个分析维度,点击小标题模块,则切换到相应的子界面。
2.模块联系
为了通过数据讲好一个“故事”,各模块要跟普通故事一样,具有逻辑。
本“故事”的逻辑就是先总后分,先讲总体情况,譬如销售额、销售量、周期性;再讲具体的用户与商品,并细化为价值分析与留存分析/动销分析两个角度。
3.图形解释
(1)销售情况总览
-
可以轻松获知xx分公司在xx月的销售额、销售量、用户数、商品sku数;
-
同时每日销售额变化也清晰可见;
-
多个公司多个期间对