目录
在数据分析与机器学习的实践中,抽样是不可或缺的一步。分层抽样作为一种常用的抽样方法,能够确保样本在不同类别中的比例与总体一致,这对于后续的分析和模型训练至关重要。然而,关于分层抽样是否适合小样本的讨论,常常让人困惑。本文将通过实例和代码,通俗易懂地探讨Python中随机分层抽样在小样本中的适用性,并给出相关建议。
一、分层抽样的基本原理
分层抽样(Stratified Sampling)是将总体分成若干层(或类别),然后从每一层中随机抽取样本。这种方法可以确保样本在各类别中的分布与总体一致,从而减少抽样误差,提高样本的代表性和准确性。
在Python中,scikit-learn库提供了StratifiedShuffleSplit和StratifiedKFold等方便的分层抽样工具。然而,这些工具通常用于较大的数据集,因为它们依赖于随机性来