人形机器人“豹小秘”在落地应用中,已经能够自主迎宾、导航讲解、问答咨询、自主巡航、自主避障、自主乘梯、精准送物等,这些功能背后,离不开传感器技术的支撑。
传感器相当于人的五官,是机器人感知外部环境的唯一途径。作为人类感知世界的延伸,传感器在机器人中的应用与在人体上类似,分别起到“视听触嗅味”的作用。
在机器人领域,除了“五官”之外,还有一类传感器负责机器人自身状态的检测,比如电机电流传感器、位置传感器、加速度传感器、陀螺仪等,它们能让机器人对自身姿态进行感知和调节,从而实现运动控制。
服务机器人大多需要自主行走,因此,行走过程中的避障、导航、定位等功能是服务机器人的基础能力,而要实现这些功能,就需要依赖传感器技术。
机器人“触”觉:感知物理世界
机器人对外部世界的感知,主要是通过“触”觉,也就是通过各类传感器实现的。
激光雷达:机器人定位避障的关键
激光雷达是目前应用最广泛的机器人避障传感器,通过发射激光并接收其反射回来的信号,激光雷达可以实现对目标距离和方位的测量,从而绘制出精确的环境地图,实现定位、导航和避障等功能。
激光雷达具有高精度、高分辨率、高灵敏度等优点,尤其适用于室内复杂环境的定位导航。不过,激光雷达也有其局限性,比如成本较高、易受天气和光线影响等。
深度相机:构建三维环境模型
深度相机通过测量物体表面每个点的空间坐标,可以获得物体的三维形状信息。相比于激光雷达,深度相机成本更低,并且可以获取更加丰富的环境信息,因此被广泛应用于机器人领域。
不过,深度相机也有其局限性,比如容易受到光照条件的影响,且测量精度和范围有限。
超声波传感器:低成本测距方案
超声波传感器通过发射超声波并接收其反射回来的信号,实现对目标距离的测量。超声波传感器具有成本低、功耗低、易于集成等优点,因此在机器人领域应用广泛。
不过,超声波传感器的测距精度和范围有限,且容易受到环境噪声的影响。
红外传感器:检测障碍物和人体
红外传感器通过发射红外光并接收其反射回来的信号,实现对目标物体的检测。红外传感器具有体积小、功耗低、成本低等优点,因此被广泛应用于机器人领域。
不过,红外传感器容易受到光照条件的影响,且测量精度和范围有限。
触觉传感器:让机器人拥有“皮肤”
触觉传感器能够感知机器人与外界物体的接触情况,包括接触位置、接触力等。通过触觉传感器,机器人可以更好地理解外部环境,提高交互体验。
触觉传感器在机器人领域的应用场景很多,比如机器人抓取物体时,通过触觉传感器可以感知物体的形状、硬度等信息,从而调整抓取策略;在医疗领域,触觉传感器可以帮助医生进行远程手术操作。
机器人“动”起来:姿态感知与调节
机器人要实现行走、抓取等动作,除了需要感知外部环境,还需要对自身姿态进行感知和调节。这就需要用到各类姿态感知传感器,比如电机电流传感器、位置传感器、加速度传感器、陀螺仪等。
电机电流传感器:监测电机状态
电机电流传感器用于监测电机的电流变化,从而实现对电机状态的监测和控制。通过监测电机电流,可以判断电机是否过载、是否堵转等异常情况,从而采取相应的保护措施。
位置传感器:确定机器人关节位置
位置传感器用于确定机器人关节的位置信息,从而实现对机器人姿态的精确控制。常见的位置传感器有电位器、编码器、霍尔传感器等。
电位器通过测量电阻值来确定关节位置,具有成本低、易于实现等优点;编码器通过测量旋转角度来确定关节位置,具有高精度、高分辨率等优点;霍尔传感器则通过测量磁场强度来确定关节位置,具有抗干扰能力强等优点。
加速度传感器:感知加速度变化
加速度传感器用于感知机器人加速度的变化,从而实现对机器人运动状态的监测和控制。通过加速度传感器,可以判断机器人是否处于静止、匀速运动或加速运动状态,从而采取相应的控制策略。
加速度传感器在机器人领域的应用场景很多,比如机器人行走过程中,通过加速度传感器可以感知地面的不平整情况,从而调整步态;在机器人运动控制中,通过加速度传感器可以实现更加平滑的轨迹跟踪和姿态控制。
陀螺仪:感知角速度变化
陀螺仪用于感知机器人角速度的变化,从而实现对机器人姿态的监测和控制。通过陀螺仪,可以判断机器人是否发生倾斜、旋转等姿态变化,从而采取相应的控制策略。
陀螺仪在机器人领域的应用场景也很多,比如机器人行走过程中,通过陀螺仪可以感知自身的偏航角,从而进行路径规划和导航;在机器人运动控制中,通过陀螺仪可以实现更加稳定的姿态控制。
传感器融合:提升机器人感知能力
单一传感器往往只能提供有限的信息,而且容易受到环境噪声和干扰的影响。因此,在实际应用中,通常会采用传感器融合技术,将多个传感器的信息进行融合处理,从而提高机器人的感知能力和鲁棒性。
传感器融合技术包括数据级融合、特征级融合和决策级融合等多个层次。数据级融合是指直接将多个传感器的原始数据进行融合处理;特征级融合是指提取多个传感器的特征信息并进行融合处理;决策级融合则是指对每个传感器的决策结果进行融合处理。
通过传感器融合技术,可以实现对外部环境更加全面、准确的感知和理解,从而提高机器人的自主导航、避障、交互等能力。
传感器应用案例:以“豹小秘”为例
“豹小秘”是优必选科技推出的一款人形服务机器人,已经在商场、博物馆、政务大厅、银行、图书馆等场景落地应用。
“豹小秘”搭载了激光雷达、深度相机、超声波传感器、红外传感器、触觉传感器等多种传感器,以及电机电流传感器、位置传感器、加速度传感器、陀螺仪等姿态感知传感器,实现了对外部环境的全面感知和对自身姿态的精确控制。
自主导航与避障
在商场、博物馆等场景中,“豹小秘”可以通过激光雷达和深度相机实现自主导航和避障。激光雷达可以绘制出精确的环境地图,深度相机可以获取更加丰富的环境信息,两者结合可以实现更加准确、可靠的导航和避障功能。
精准送物
在政务大厅、银行等场景中,“豹小秘”可以通过搭载的机械臂实现精准送物功能。机械臂上配备了触觉传感器和位置传感器等,可以感知物体的形状、硬度等信息,并精确控制机械臂的运动轨迹和力度,从而将物体准确送达指定位置。
人脸识别与交互
“豹小秘”还搭载了人脸识别模块和语音识别模块等交互传感器,可以实现对用户的身份识别和语音交互功能。通过人脸识别模块,“豹小秘”可以识别用户的身份信息,并为用户提供个性化的服务;通过语音识别模块,“豹小秘”可以听懂用户的指令和问题,并给出相应的回答和反馈。
自主充电与维护
为了保证“豹小秘”的持续工作能力和用户体验,“豹小秘”还具备自主充电和维护功能。通过搭载的电池电量传感器和充电接口传感器等,“豹小秘”可以实时监测电池电量情况,并在电量不足时自动寻找充电桩进行充电;同时,“豹小秘”还可以通过搭载的清洁传感器等实现对自身表面的清洁和维护功能。
传感器技术发展趋势与挑战
随着机器人技术的不断发展和应用场景的不断拓展,传感器技术也面临着新的发展趋势和挑战。
发展趋势
-
小型化与集成化:随着机器人技术的不断发展,对传感器的要求也越来越高。小型化和集成化是传感器技术的重要发展趋势之一,可以减小机器人的体积和重量,提高机器人的灵活性和可部署性。
-
高精度与高可靠性:随着机器人应用场景的不断拓展,对传感器的精度和可靠性要求也越来越高。高精度和高可靠性是传感器技术的重要发展方向之一,可以提高机器人的感知能力和鲁棒性。
-
低功耗与智能化:随着物联网技术的不断发展,对传感器的功耗和智能化要求也越来越高。低功耗和智能化是传感器技术的重要发展趋势之一,可以延长机器人的工作时间和降低维护成本。
挑战
-
成本问题:高精度和高可靠性的传感器往往成本较高,限制了机器人在一些场景中的应用。如何降低成本是传感器技术面临的重要挑战之一。
-
环境适应性:不同场景下的环境条件和干扰因素不同,对传感器的适应性和鲁棒性要求也不同。如何提高传感器在不同场景下的适应性和鲁棒性是传感器技术面临的重要挑战之一。
-
数据安全与隐私保护:随着传感器技术的不断发展,机器人获取的数据越来越多,如何保障数据的安全性和用户的隐私是传感器技术面临的重要挑战之一。
结语
传感器技术作为机器人技术的核心之一,对于机器人的感知能力和自主能力至关重要。随着机器人应用场景的不断拓展和技术的不断发展,传感器技术也面临着新的发展趋势和挑战。未来,需要不断推动传感器技术的创新和发展,提高传感器的精度、可靠性、小型化、集成化、低功耗和智能化水平,为机器人的广泛应用提供更好的技术支撑。