题目
给定一个非负整数数组,你最初位于数组的第一个位置,数组中的每个元素代表你在该位置可以跳跃的最大长度,判断你是否能够到达最后一个位置。
示例 1:
输入: [2,3,1,1,4]
输出: true
解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。
示例 2:
输入: [3,2,1,0,4]
输出: false
解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。
注意点
1、最大可跳跃的位置的公式:max_end = i + nums[i];(在[0, max_end]范围内都可以到达,因为可跳远,则一定可以跳近);
2、从头开始遍历,计算在可跳跃的最大范围内(i <= max_end)每一位置的最大可跳跃的位置,并重新计算最大可跳跃的位置;
3、如果跳跃的最大下标大于等于结束的下标,则可以到达;否则,不可以到达。
4、如示例1:
- max_end = 0 + nums[0] = 2(初始值);
- 计算范围内的最大值:max1 = 1 + nums[1] = 4,max_end = max(2, 4) = 4 = nums.length - 1,所以可以到达。
实现
public boolean canJump(int[] nums) {
if (nums == null || nums.length == 0) return false;
int len = nums.length;
int max_end = nums[0]; //可以跳跃到的最大下标
for (int i = 0 ; i < len; i++){
//如果在可跳跃的最大范围之内
if(i <= max_end){
//重新计算可以跳跃到的最大下标
max_end= Math.max(i + nums[i], max_end);
//如果跳跃的最大下标大于等于结束的下标
if(max_end>= len - 1){
//返回true
return true;
}
}else {//如果在最大跳跃范围内还无法超过结束的下标,则无需遍历后面的元素
//返回false
return false;
}
}
return false;
}