01Neural Style Transfer
图片风格迁移
图片表示
使用VGG network来表示
内容图片
风格图片
风格迁移后的新图片
Content Loss
Style Loss
02 Generative Adversarial Network
Generator: 生成器,目标是让生成的数据接近真实数据
Discriminator: 分类器,目标是能够鉴别真实数据和生成的假数据
DCGAN
03 CycleGAN
Network
模型架构
损失函数
论文和模型代码
https://junyanz.github.io/CycleGAN/
https://arxiv.org/pdf/1703.10593.pdf
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py