pytorch入门学习第六课图片风格迁移和GAN

01Neural Style Transfer

图片风格迁移

在这里插入图片描述

图片表示

使用VGG network来表示
内容图片
风格图片
风格迁移后的新图片

Content Loss

在这里插入图片描述

Style Loss

在这里插入图片描述

02 Generative Adversarial Network

Generator: 生成器,目标是让生成的数据接近真实数据

Discriminator: 分类器,目标是能够鉴别真实数据和生成的假数据
在这里插入图片描述

DCGAN

在这里插入图片描述

03 CycleGAN

Network

在这里插入图片描述
在这里插入图片描述

模型架构

在这里插入图片描述

损失函数

在这里插入图片描述

论文和模型代码

https://junyanz.github.io/CycleGAN/

https://arxiv.org/pdf/1703.10593.pdf

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值