SEED数据集 脑电 情感 下载方式

SEED: Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks

官网:SEED Dataset

论文:https://pan.baidu.com/s/1gEvxkJCIT8Qg-WBl1sOBsQ?pwd=24zi 提取码:24zi 
数据下载:CodeStoreHub/EEG-datasets

  • 研究目的: 本研究旨在通过构建基于EEG的情绪识别模型,找出与情绪识别相关的关键频率带和通道。模型的情绪分类包括三类情绪:积极、中性和消极。研究使用深度神经网络(DBN)进行训练和分析,以提升情绪识别的准确性。

  • 研究方法

    • 研究数据来自15名被试者,每名被试者分别在间隔几天后进行了两次实验。
    • 研究利用多通道EEG数据提取了微分熵(Differential Entropy, DE)特征,并通过深度信念网络(DBN)对这些特征进行训练。提取的特征来自五个频段:Delta(1-3Hz)、Theta(4-7Hz)、Alpha(8-13Hz)、Beta(14-30Hz)和Gamma(31-50Hz)。
    • DBN模型的训练分为三个步骤:无监督预训练、无监督微调和有监督微调。训练完成后,通过分析DBN的权重分布,确定关键的频率带和EEG通道。
  • 主要发现

    • 关键频率带:研究发现,Beta(14-30Hz)和Gamma(31-50Hz)频段在情绪识别中非常重要。这些频段与不同情绪的神经特征有密切关联。
    • 关键通道:通过分析DBN训练后的权重分布,作者发现侧颞区的电极(如FT7、FT8、T7和T8)在情绪识别中起重要作用。
    • 识别准确率:通过减少EEG通道的数量,模型仍能达到较高的情绪识别准确率(最高可达86.65%),甚至超过了使用全部62个EEG通道的模型。DBN模型的表现优于传统的机器学习模型,如支持向量机(SVM)、逻辑回归和K近邻(kNN)。
  • 模型对比: DBN模型的平均准确率为86.08%,高于SVM(83.99%)和逻辑回归(82.70%)。即使在减少EEG通道的情况下,模型的性能也保持稳定,证明了在减少计算成本的同时仍可以实现高效的情绪识别。

  • 结论: 论文表明,通过聚焦于特定的频率带和电极,可以在不牺牲识别准确性的情况下降低计算成本。这种方法在实际应用中具有潜力,比如在驾驶疲劳检测或心理状态监测中的应用。此外,DBN在EEG情绪识别领域展现了很好的前景,提供了情绪处理的神经机制的有力证据。

数据集预览

 下载链接:CodeStoreHub/EEG-datasets

根目录

Preprocessed_EEG目录

ExtractedFeatures目录

### SEED IV 数据集概述 SEED IV 数据集扩展了原始 SEED 数据集的内容,包含了更多种类的情感刺激材料以及更复杂的实验设计。该数据集中共有15名参与者,在不同条件下完成了多项任务,旨在引发多种情绪状态的变化[^3]。 #### 下载指南 对于希望获取并利用 SEED IV 进行研究的研究人员来说,可以通过访问特定网站或平台下载数据集。通常情况下,这类资源会被托管于学术机构服务器或是公共科研数据库中。具体链接地址需查阅最新发布的官方文档或公告获得最准确的信息[^4]。 #### 使用说明 当研究人员获得了 SEED IV 的存档文件之后,应当按照如下方法处理: - **解压缩**:使用合适的工具打开ZIP/RAR等格式的压缩包; - **读取元数据**:查看README.txt或其他形式的描述性文本以了解目录结构、文件命名规则等内容; - **加载EEG记录**:采用MATLAB脚本或者其他编程语言编写的解析函数导入.mat文件中的时间序列信号; - **预处理阶段**:执行去噪、滤波等一系列操作改善信噪比; ```matlab % MATLAB 示例代码用于加载 .mat 文件 data = load('path_to_file/subject_01_EEG_data.mat'); disp(data); ``` #### 特征介绍 SEED IV 中不仅收录了传统的信号测量结果,还包括了一些额外的心理生理指标作为辅助变量。这些多模态信息有助于构建更加全面的情绪评估体系。然而值得注意的是,由于个体差异的存在加上采集过程中不可避免引入的各种干扰因素,所得到的数据可能存在一定的偏差和不确定性。因此在实际应用之前往往还需要经过严格的清洗与标准化流程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值