SEED: Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks
论文:https://pan.baidu.com/s/1gEvxkJCIT8Qg-WBl1sOBsQ?pwd=24zi 提取码:24zi
数据:https://github.com/CodeStoreHub/EEG-datasets
-
研究目的: 本研究旨在通过构建基于EEG的情绪识别模型,找出与情绪识别相关的关键频率带和通道。模型的情绪分类包括三类情绪:积极、中性和消极。研究使用深度神经网络(DBN)进行训练和分析,以提升情绪识别的准确性。
-
研究方法:
- 研究数据来自15名被试者,每名被试者分别在间隔几天后进行了两次实验。
- 研究利用多通道EEG数据提取了微分熵(Differential Entropy, DE)特征,并通过深度信念网络(DBN)对这些特征进行训练。提取的特征来自五个频段:Delta(1-3Hz)、Theta(4-7Hz)、Alpha(8-13Hz)、Beta(14-30Hz)和Gamma(31-50Hz)。
- DBN模型的训练分为三个步骤:无监督预训练、无监督微调和有监督微调。训练完成后,通过分析DBN的权重分布,确定关键的频率带和EEG通道。
-
主要发现:
- 关键频率带:研究发现,Beta(14-30Hz)和Gamma(31-50Hz)频段在情绪识别中非常重要。这些频段与不同情绪的神经特征有密切关联。
- 关键通道:通过分析DBN训练后的权重分布,作者发现侧颞区的电极(如FT7、FT8、T7和T8)在情绪识别中起重要作用。
- 识别准确率:通过减少EEG通道的数量,模型仍能达到较高的情绪识别准确率(最高可达86.65%),甚至超过了使用全部62个EEG通道的模型。DBN模型的表现优于传统的机器学习模型,如支持向量机(SVM)、逻辑回归和K近邻(kNN)。
-
模型对比: DBN模型的平均准确率为86.08%,高于SVM(83.99%)和逻辑回归(82.70%)。即使在减少EEG通道的情况下,模型的性能也保持稳定,证明了在减少计算成本的同时仍可以实现高效的情绪识别。
-
结论: 论文表明,通过聚焦于特定的频率带和电极,可以在不牺牲识别准确性的情况下降低计算成本。这种方法在实际应用中具有潜力,比如在驾驶疲劳检测或心理状态监测中的应用。此外,DBN在EEG情绪识别领域展现了很好的前景,提供了情绪处理的神经机制的有力证据。
数据集预览
下载链接:https://github.com/CodeStoreHub/EEG-datasets