【Pytorch-神经网络的两种快速搭建方法-包含回归和分类的两个例子】

本文介绍了两种快速搭建PyTorch神经网络的方法,包括使用Sequential和定义Net类的方式,并提供了分类和回归问题的具体例子,通过训练和可视化结果展示了网络的功能。

快速搭建方法1

使用pytorch快速搭建的方法

net2 = torch.nn.Sequential(
    torch.nn.Linear(1, 10),
    torch.nn.ReLU(),
    torch.nn.Linear(10, 1)
)

Sequential(
(0): Linear(in_features=1, out_features=10, bias=True)
(1): ReLU()
(2): Linear(in_features=10, out_features=1, bias=True)
)

常规搭建方法2

# 建立神经网络
class Net(torch.nn.Module):
    def __init__(self,n_features,n_hidden,n_output):
        super(Net,self).__init__()
        self.hidden = torch.nn.Linear(n_features,n_hidden)
        self.predict = torch.nn.Linear(n_hidden,n_output)

    def forward(self,x):
        x = F.relu(self.hidden(x))
        x = self.predict(x)
        return x
net1= Net(2,10,2)

Net(
(hidden): Linear(in_features=2, out_features=10, bias=True)
(predict): Linear(in_features=10, out_features=2, bias=True)
)

分类例子

结果显示
在这里插入图片描述

建立数据

# 假数据
n_data = torch.ones(100, 2)         # 数据的基本形态
#normal该函数返回从单独的正态分布中提取的随机数的张量
x0 = torch.normal(2*n_data, 1)      # 类型0 x data (tensor), shape=(100, 2)
y0 = torch.zeros(100)               # 类型0 y data (tensor), shape=(100, 1)
x1 = torch.normal(-2*n_data, 1)     # 类型1 x data (tensor), shape=(100, 2)
y1 = torch.ones(100)                # 类型1 y data (tensor), shape=(100, 1)

# 注意 x, y 数据的数据形式是一定要像下面一样 (torch.cat 是在合并数据, 按维数0(行)拼接)
x = torch.cat((x0, x1), 0).type(torch.FloatTensor)  # FloatTensor = 32-bit floating
y = torch.cat((y0, y1), ).type(torch.LongTensor)    # LongTensor = 64-bit integer

使用我们曾经搭建的net进行训练


# optimizer 是训练的工具
optimizer = torch.optim.SGD(net.parameters(), lr=0.02)  # 传入 net 的所有参数, 学习率
# 算误差的时候, 注意真实值!不是! one-hot 形式的, 而是1D Tensor, (batch,)
# 但是预测值是2D tensor (batch, n_classes)
loss_func = torch.nn.CrossEntropyLoss()

# plt.ion()   # 画图
# plt.show()
for t in range(100):
    out = net(x)     # 喂给 net 训练数据 x, 输出分析值

    loss = loss_func(out, y)     # 计算两者的误差

    optimizer.zero_grad()   # 清空上一步的残余更新参数值
    loss.backward()         # 误差反向传播, 计算参数更新值
    optimizer.step()        # 将参数更新值施加到 net 的 parameters 上

画图显示

    if t % 2 == 0:
        plt.cla()
        # 过了一道 softmax 的激励函数后的最大概率才是预测值
        prediction = torch.max(F.softmax(out), 1)[1]
        pred_y = prediction.data.numpy().squeeze()
        target_y = y.data.numpy()
        plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
        accuracy = sum(pred_y == target_y) / 200.  # 预测中有多少和真实值一样
        plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'})
        plt.pause(0.1)

完整代码

import torch
import numpy as np
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt


# 假数据
n_data = torch.ones(100, 2)         # 数据的基本形态
#normal该函数返回从单独的正态分布中提取的随机数的张量
x0 = torch.normal(2*n_data, 1)      # 类型0 x data (tensor), shape=(100, 2)
y0 = torch.zeros(100)               # 类型0 y data (tensor), shape=(100, 1)
x1 = torch.normal(-2*n_data, 1)     # 类型1 x data (tensor), shape=(100, 2)
y1 = torch.ones(100)                # 类型1 y data (tensor), shape=(100, 1)

# 注意 x, y 数据的数据形式是一定要像下面一样 (torch.cat 是在合并数据, 按维数0(行)拼接)
x = torch.cat((x0, x1), 0).type(torch.FloatTensor)  # FloatTensor = 32-bit floating
y = torch.cat((y0, y1), ).type(torch.LongTensor)    # LongTensor = 64-bit integer

# 画图
# plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn')
# plt.show()
#

# 建立神经网络
class Net(torch.nn.Module):
    def __init__(self,n_features,n_hidden,n_output):
        super(Net,self).__init__()
        self.hidden = torch.nn.Linear(n_features,n_hidden)
        self.predict = torch.nn.Linear(n_hidden,n_output)

    def forward(self,x):
        x = F.relu(self.hidden(x))
        x = self.predict(x)
        return x


net2 = torch.nn.Sequential(
    torch.nn.Linear(1, 10),
    torch.nn.ReLU(),
    torch.nn.Linear(10, 1)
)
net = Net(2,10,2)
print(net)
print(net2)


# optimizer 是训练的工具
optimizer = torch.optim.SGD(net.parameters(), lr=0.02)  # 传入 net 的所有参数, 学习率
# 算误差的时候, 注意真实值!不是! one-hot 形式的, 而是1D Tensor, (batch,)
# 但是预测值是2D tensor (batch, n_classes)
loss_func = torch.nn.CrossEntropyLoss()

# plt.ion()   # 画图
# plt.show()
for t in range(100):
    out = net(x)     # 喂给 net 训练数据 x, 输出分析值

    loss = loss_func(out, y)     # 计算两者的误差

    optimizer.zero_grad()   # 清空上一步的残余更新参数值
    loss.backward()         # 误差反向传播, 计算参数更新值
    optimizer.step()        # 将参数更新值施加到 net 的 parameters 上
    # 接着上面来
    if t % 2 == 0:
        plt.cla()
        # 过了一道 softmax 的激励函数后的最大概率才是预测值
        prediction = torch.max(F.softmax(out), 1)[1]
        pred_y = prediction.data.numpy().squeeze()
        target_y = y.data.numpy()
        plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
        accuracy = sum(pred_y == target_y) / 200.  # 预测中有多少和真实值一样
        plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'})
        plt.pause(0.1)
#
# plt.ioff()  # 停止画图
# plt.show()

回归例子

结果显示
在这里插入图片描述

完整代码

x = torch.unsqueeze(torch.linspace(-1,1,100),dim=1)
y = x.pow(2) + 0.2*torch.rand(x.size())
y = Variable(y)
x = Variable(x)

# 建立神经网络
class Net(torch.nn.Module):
    def __init__(self,n_features,n_hidden,n_output):
        super(Net,self).__init__()
        self.hidden = torch.nn.Linear(n_features,n_hidden)
        self.predict = torch.nn.Linear(n_hidden,n_output)

    def forward(self,x):
        x = F.relu(self.hidden(x))
        x = self.predict(x)
        return x

net = Net(1,10,1)
# # net(x)
# print(net(x))
# plt.scatter(x,net(x).data.numpy())
# plt.show()
# optimizer 是训练的工具
optimizer = torch.optim.SGD(net.parameters(),lr=0.5)
loss_fun = torch.nn.MSELoss() # 预测值和真实值的误差计算公式 (均方差)

plt.figure(2, figsize=(8, 6))
plt.ion()
for t in range(100):
    prediction = net(x)# 喂给 net 训练数据 x, 输出预测值
    loss = loss_fun(prediction,y)# 计算两者的误差
    optimizer.zero_grad()# 清空上一步的残余更新参数值
    loss.backward()# 误差反向传播, 计算参数更新值
    # 优化梯度
    optimizer.step()# 将参数更新值施加到 net 的 parameters 上
    # 接着上面来
    if t % 5 == 0:
        # plot and show learning process
        plt.cla()
        plt.scatter(x.data.numpy(), y.data.numpy())  # 离散的点
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
        plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
        plt.pause(0.1)

plt.ioff()
plt.show()
### 前馈神经网络 (FFNN) 的基本结构与实现 前馈神经网络是一种常见的深度学习模型,其核心特点是信息流从输入层经过若干隐藏层到达输出层,整个过程是单向的。以下是基于 Python NumPy 实现的一个简单前馈神经网络示例: #### 使用 NumPy 构建一个简单的前馈神经网络 以下代码展示了一个两层的前馈神经网络,用于解决二分类问题。 ```python import numpy as np # 定义激活函数及其导数 def sigmoid(x): return 1 / (1 + np.exp(-x)) def sigmoid_derivative(x): return x * (1 - x) # 输入数据 X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y = np.array([[0], [1], [1], [0]]) # 初始化权重 np.random.seed(1) weights_input_hidden = 2 * np.random.random((2, 2)) - 1 weights_hidden_output = 2 * np.random.random((2, 1)) - 1 # 训练参数 learning_rate = 0.1 epochs = 10000 for epoch in range(epochs): # 正向传播 hidden_layer_input = np.dot(X, weights_input_hidden) hidden_layer_output = sigmoid(hidden_layer_input) output_layer_input = np.dot(hidden_layer_output, weights_hidden_output) predicted_output = sigmoid(output_layer_input) # 反向传播 error = y - predicted_output d_predicted_output = error * sigmoid_derivative(predicted_output) error_hidden_layer = d_predicted_output.dot(weights_hidden_output.T) d_hidden_layer = error_hidden_layer * sigmoid_derivative(hidden_layer_output) # 更新权重 weights_hidden_output += hidden_layer_output.T.dot(d_predicted_output) * learning_rate weights_input_hidden += X.T.dot(d_hidden_layer) * learning_rate print("预测结果:\n", predicted_output) ``` 上述代码实现了 XOR 逻辑门的功能[^2]。该网络具有两个输入节点、两个隐藏节点以及一个输出节点。通过多次迭代调整权重,最终可以得到接近真实值的结果。 --- #### 使用 PyTorch 构建前馈神经网络 如果希望借助现代框架简化开发流程,则可以选择 PyTorch快速搭建训练前馈神经网络。下面是一个使用 PyTorch 进行线性回归的任务实例[^3]: ```python import torch import torch.nn as nn import torch.optim as optim # 创建数据集 X = torch.tensor([[1.0], [2.0], [3.0]], dtype=torch.float32) y = torch.tensor([[2.0], [4.0], [6.0]], dtype=torch.float32) # 定义模型 class FeedForwardNet(nn.Module): def __init__(self): super(FeedForwardNet, self).__init__() self.linear = nn.Linear(1, 1) # 单一输入单一输出 def forward(self, x): return self.linear(x) model = FeedForwardNet() # 设置损失函数优化器 criterion = nn.MSELoss() optimizer = optim.SGD(model.parameters(), lr=0.01) # 开始训练 num_epochs = 500 for epoch in range(num_epochs): model.train() outputs = model(X) loss = criterion(outputs, y) optimizer.zero_grad() loss.backward() optimizer.step() if (epoch+1) % 100 == 0: print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}') # 测试模型 test_value = torch.tensor([[4.0]], dtype=torch.float32) predicted = model(test_value).item() print(f"Predicted value for input 4 is: {predicted}") ``` 此代码展示了如何定义一个带有单一线性层的前馈神经网络,并完成对其的训练测试操作。 --- #### 手写数字识别中的应用 另一个经典的前馈神经网络应用场景是对 MNIST 数据集中手写数字图像进行分类。这里提供一个多层感知机(MLP)版本的手写数字识别程序概述[^4]: ```python from tensorflow.keras.datasets import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.utils import to_categorical # 加载MNIST数据集 (X_train, y_train), (X_test, y_test) = mnist.load_data() # 预处理数据 X_train = X_train.reshape((X_train.shape[0], 28*28)).astype('float32') / 255 X_test = X_test.reshape((X_test.shape[0], 28*28)).astype('float32') / 255 y_train = to_categorical(y_train, num_classes=10) y_test = to_categorical(y_test, num_classes=10) # 构建模型 model = Sequential([ Dense(512, activation='relu', input_shape=(784,)), Dense(10, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(X_train, y_train, epochs=10, batch_size=128, validation_split=0.2) # 评估性能 test_loss, test_acc = model.evaluate(X_test, y_test) print(f'Test accuracy: {test_acc}') ``` 这段代码说明了如何利用 Keras 库创建并训练一个多层感知机来执行手写数字分类任务。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值