【完整源码+数据集+部署教程】农作物及杂草识别系统源码和数据集:改进yolo11-RCSOSA

研究背景与意义

研究背景与意义

随着全球人口的不断增长,农业生产面临着前所未有的挑战。如何提高农作物的产量和质量,成为了现代农业研究的重要课题。在这一背景下,智能农业技术的应用逐渐受到重视,尤其是计算机视觉技术在农作物监测和管理中的潜力愈发显现。传统的人工识别方法不仅耗时耗力,而且容易受到人为因素的影响,难以保证识别的准确性和一致性。因此,开发高效、准确的农作物及杂草识别系统,成为了提升农业生产效率的重要手段。

本研究旨在基于改进的YOLOv11模型,构建一个高效的农作物及杂草识别系统。该系统将利用CWD400-800数据集,该数据集包含1100幅图像,涵盖农作物、杂草及其他相关类别,具备较为丰富的多样性和代表性。通过对该数据集的深度学习训练,期望能够实现对农作物与杂草的高精度识别与分类,从而为农业管理提供科学依据。

此外,随着环境保护意识的增强,精准农业的理念逐渐深入人心。通过自动化的识别系统,农民可以更有效地进行杂草管理,减少化学除草剂的使用,降低对环境的影响。这不仅有助于提高农作物的产量和质量,还能推动可持续农业的发展。因此,基于改进YOLOv11的农作物及杂草识别系统的研究,不仅具有重要的学术价值,也为实际农业生产提供了切实可行的解决方案。通过该系统的推广应用,期望能够推动农业生产方式的转变,实现农业的智能化与可持续发展。

图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据集信息展示

本项目数据集信息介绍

本项目所使用的数据集名为“CWD400-800”,旨在为改进YOLOv11的农作物及杂草识别系统提供高质量的训练数据。该数据集专注于农业领域,特别是作物与杂草的识别与分类,具有重要的实际应用价值。数据集中包含三种主要类别,分别为“Crop”(作物)、“Liiter”(杂草)和“Weed”(杂草),这些类别的划分有助于系统在复杂的农业环境中准确识别和区分不同的植物种类。

在数据集的构建过程中,研究团队收集了大量的图像数据,这些图像涵盖了不同生长阶段、不同光照条件以及不同气候环境下的作物和杂草。这种多样性确保了模型在训练过程中能够学习到丰富的特征,从而提高其在实际应用中的泛化能力。数据集中的每一张图像都经过精心标注,确保每个类别的植物在图像中清晰可辨,标注的准确性直接影响到模型的训练效果和识别精度。

此外,数据集还考虑到了不同作物与杂草的生长特征,提供了丰富的背景信息,使得模型不仅能够识别植物的形态特征,还能理解其生长环境。这种综合性的训练数据将极大地提升YOLOv11在农作物及杂草识别任务中的表现,帮助农民和农业工作者更有效地管理作物生长和杂草控制,从而实现更高的农业生产效率和可持续发展目标。通过对“CWD400-800”数据集的深入分析与应用,本项目期待能够推动农业智能化的发展,为现代农业提供更为精准的技术支持。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

项目核心源码讲解(再也不用担心看不懂代码逻辑)

以下是经过简化和注释的核心代码部分:

import torch
import torch.nn as nn

自定义的批量归一化层,带有可学习的参数 alpha

class RepBN(nn.Module):
def init(self, channels):
super(RepBN, self).init()
# 初始化可学习参数 alpha,初始值为 1
self.alpha = nn.Parameter(torch.ones(1))
# 使用 1D 批量归一化
self.bn = nn.BatchNorm1d(channels)

def forward(self, x):
    # 将输入的维度进行转置,以适应 BatchNorm1d 的输入格式
    x = x.transpose(1, 2)
    # 进行批量归一化,并加上 alpha 乘以原始输入
    x = self.bn(x) + self.alpha * x
    # 再次转置回原来的维度
    x = x.transpose(1, 2)
    return x
自定义的线性归一化层,结合了两个归一化方法

class LinearNorm(nn.Module):
def init(self, dim, norm1, norm2, warm=0, step=300000, r0=1.0):
super(LinearNorm, self).init()
# 注册缓冲区,用于存储预热期和迭代次数
self.register_buffer(‘warm’, torch.tensor(warm))
self.register_buffer(‘iter’, torch.tensor(step))
self.register_buffer(‘total_step’, torch.tensor(step))
self.r0 = r0 # 初始比例因子
# 初始化两个归一化方法
self.norm1 = norm1(dim)
self.norm2 = norm2(dim)

def forward(self, x):
    if self.training:  # 如果处于训练模式
        if self.warm > 0:  # 如果还有预热期
            self.warm.copy_(self.warm - 1)  # 递减预热计数
            x = self.norm1(x)  # 仅使用 norm1 进行归一化
        else:
            # 计算当前的比例因子 lamda
            lamda = self.r0 * self.iter / self.total_step
            if self.iter > 0:
                self.iter.copy_(self.iter - 1)  # 递减迭代计数
            # 使用两个归一化方法进行归一化
            x1 = self.norm1(x)
            x2 = self.norm2(x)
            # 线性组合两个归一化结果
            x = lamda * x1 + (1 - lamda) * x2
    else:
        # 如果不在训练模式,直接使用 norm2 进行归一化
        x = self.norm2(x)
    return x

代码说明:
RepBN 类:实现了一个自定义的批量归一化层,除了进行标准的批量归一化外,还引入了一个可学习的参数 alpha,用于调节原始输入与归一化结果的线性组合。

LinearNorm 类:实现了一个结合了两种归一化方法的线性归一化层。根据训练状态和预热期,动态选择使用哪种归一化方法,并通过比例因子 lamda 来平衡两种归一化的影响。预热期结束后,逐渐过渡到第二种归一化方法。

这个程序文件 prepbn.py 定义了两个神经网络模块,分别是 RepBN 和 LinearNorm,它们都是继承自 PyTorch 的 nn.Module 类。

RepBN 类实现了一种自定义的批量归一化(Batch Normalization)方法。它的构造函数接收一个参数 channels,表示输入数据的通道数。在构造函数中,首先调用父类的构造函数,然后定义了一个可学习的参数 alpha,初始值为 1,并创建了一个标准的 1D 批量归一化层 bn。在 forward 方法中,输入张量 x 的维度被转置,以适应批量归一化的要求。接着,经过批量归一化处理后,输出结果与 alpha 乘以原始输入 x 相加,最后再转置回原来的维度并返回。

LinearNorm 类则实现了一种线性归一化的机制。它的构造函数接收多个参数,包括 dim(维度)、norm1 和 norm2(分别是两种归一化方法)、warm(预热步数)、step(迭代步数)和 r0(初始比例)。在构造函数中,使用 register_buffer 方法注册了一些用于计算的张量,这些张量在模型训练过程中会被保留,但不会被视为模型的可学习参数。在 forward 方法中,首先检查模型是否处于训练状态。如果是,并且 warm 大于 0,则执行第一次归一化 norm1,并减少 warm 的值。如果 warm 为 0,则计算一个比例 lamda,这个比例是根据当前的迭代次数和总步数动态调整的。接着,分别使用 norm1 和 norm2 对输入 x 进行归一化处理,并根据 lamda 的值线性组合这两个结果。如果模型不在训练状态,则直接使用 norm2 对输入进行归一化处理并返回。

整体来看,这个文件提供了两种不同的归一化方法,适用于不同的训练策略和需求,增强了模型的灵活性和表现能力。

10.3 kan_conv.py
以下是保留的核心代码部分,并附上详细的中文注释:

import torch
import torch.nn as nn

class KANConvNDLayer(nn.Module):
def init(self, conv_class, norm_class, input_dim, output_dim, spline_order, kernel_size,
groups=1, padding=0, stride=1, dilation=1,
ndim: int = 2, grid_size=5, base_activation=nn.GELU, grid_range=[-1, 1], dropout=0.0):
super(KANConvNDLayer, self).init()

    # 初始化参数
    self.inputdim = input_dim  # 输入维度
    self.outdim = output_dim    # 输出维度
    self.spline_order = spline_order  # 样条阶数
    self.kernel_size = kernel_size  # 卷积核大小
    self.padding = padding  # 填充
    self.stride = stride  # 步幅
    self.dilation = dilation  # 膨胀
    self.groups = groups  # 分组数
    self.ndim = ndim  # 维度
    self.grid_size = grid_size  # 网格大小
    self.base_activation = base_activation()  # 基础激活函数
    self.grid_range = grid_range  # 网格范围

    # 初始化 dropout
    self.dropout = None
    if dropout > 0:
        if ndim == 1:
            self.dropout = nn.Dropout1d(p=dropout)
        elif ndim == 2:
            self.dropout = nn.Dropout2d(p=dropout)
        elif ndim == 3:
            self.dropout = nn.Dropout3d(p=dropout)

    # 检查分组数和维度的有效性
    if groups <= 0:
        raise ValueError('groups must be a positive integer')
    if input_dim % groups != 0:
        raise ValueError('input_dim must be divisible by groups')
    if output_dim % groups != 0:
        raise ValueError('output_dim must be divisible by groups')

    # 初始化基础卷积层
    self.base_conv = nn.ModuleList([conv_class(input_dim // groups,
                                               output_dim // groups,
                                               kernel_size,
                                               stride,
                                               padding,
                                               dilation,
                                               groups=1,
                                               bias=False) for _ in range(groups)])

    # 初始化样条卷积层
    self.spline_conv = nn.ModuleList([conv_class((grid_size + spline_order) * input_dim // groups,
                                                 output_dim // groups,
                                                 kernel_size,
                                                 stride,
                                                 padding,
                                                 dilation,
                                                 groups=1,
                                                 bias=False) for _ in range(groups)])

    # 初始化归一化层
    self.layer_norm = nn.ModuleList([norm_class(output_dim // groups) for _ in range(groups)])

    # 初始化 PReLU 激活函数
    self.prelus = nn.ModuleList([nn.PReLU() for _ in range(groups)])

    # 创建网格
    h = (self.grid_range[1] - self.grid_range[0]) / grid_size
    self.grid = torch.linspace(
        self.grid_range[0] - h * spline_order,
        self.grid_range[1] + h * spline_order,
        grid_size + 2 * spline_order + 1,
        dtype=torch.float32
    )

    # 使用 Kaiming 均匀分布初始化卷积层权重
    for conv_layer in self.base_conv:
        nn.init.kaiming_uniform_(conv_layer.weight, nonlinearity='linear')

    for conv_layer in self.spline_conv:
        nn.init.kaiming_uniform_(conv_layer.weight, nonlinearity='linear')

def forward_kan(self, x, group_index):
    # 对输入应用基础激活函数并进行线性变换
    base_output = self.base_conv[group_index](self.base_activation(x))

    x_uns = x.unsqueeze(-1)  # 扩展维度以进行样条操作
    target = x.shape[1:] + self.grid.shape  # 计算目标形状
    grid = self.grid.view(*list([1 for _ in range(self.ndim + 1)] + [-1, ])).expand(target).contiguous().to(x.device)

    # 计算样条基
    bases = ((x_uns >= grid[..., :-1]) & (x_uns < grid[..., 1:])).to(x.dtype)

    # 计算多个阶数的样条基
    for k in range(1, self.spline_order + 1):
        left_intervals = grid[..., :-(k + 1)]
        right_intervals = grid[..., k:-1]
        delta = torch.where(right_intervals == left_intervals, torch.ones_like(right_intervals),
                            right_intervals - left_intervals)
        bases = ((x_uns - left_intervals) / delta * bases[..., :-1]) + \
                ((grid[..., k + 1:] - x_uns) / (grid[..., k + 1:] - grid[..., 1:(-k)]) * bases[..., 1:])
    bases = bases.contiguous()
    bases = bases.moveaxis(-1, 2).flatten(1, 2)  # 调整基的形状以适应卷积输入
    spline_output = self.spline_conv[group_index](bases)  # 通过样条卷积层

    # 通过归一化和激活函数处理输出
    x = self.prelus[group_index](self.layer_norm[group_index](base_output + spline_output))

    # 应用 dropout
    if self.dropout is not None:
        x = self.dropout(x)

    return x

def forward(self, x):
    # 将输入分割为多个组
    split_x = torch.split(x, self.inputdim // self.groups, dim=1)
    output = []
    for group_ind, _x in enumerate(split_x):
        y = self.forward_kan(_x.clone(), group_ind)  # 对每个组进行前向传播
        output.append(y.clone())
    y = torch.cat(output, dim=1)  # 将输出拼接在一起
    return y

代码注释说明:
类初始化:init 方法中定义了输入和输出的维度、卷积参数、激活函数等,初始化了卷积层、归一化层和激活函数。
前向传播:forward_kan 方法实现了对输入的前向传播,包括基础卷积、样条卷积和激活函数的应用。
样条基计算:通过计算输入值与网格的关系,生成样条基,进行样条卷积操作。
分组处理:forward 方法将输入分为多个组,分别进行处理并最终拼接输出。
这个程序文件定义了一个名为 KANConv 的卷积层,主要用于深度学习中的卷积神经网络(CNN)。该层实现了一个自定义的多维卷积层,支持1D、2D和3D卷积操作。以下是对代码的详细说明。

首先,程序导入了 PyTorch 库及其神经网络模块。接着,定义了一个名为 KANConvNDLayer 的类,它继承自 nn.Module,这是所有神经网络模块的基类。该类的构造函数接收多个参数,包括卷积类、归一化类、输入和输出维度、样条顺序、卷积核大小、分组数、填充、步幅、扩张、维度数、网格大小、基础激活函数、网格范围和 dropout 比例。

在构造函数中,首先对输入参数进行初始化,并进行一些有效性检查,比如确保分组数为正整数,以及输入和输出维度能够被分组数整除。接着,初始化了基础卷积层和样条卷积层,分别使用 conv_class 和 norm_class 创建多个卷积和归一化层,这些层被存储在 ModuleList 中以便于管理。

样条卷积层的输入维度被设置为 (grid_size + spline_order) * input_dim // groups,这是为了处理样条基函数的计算。接下来,创建了一个网格,网格的范围由 grid_range 和 grid_size 决定,并使用 Kaiming 均匀分布初始化卷积层的权重,以便在训练开始时能够更好地收敛。

forward_kan 方法实现了前向传播的具体逻辑。它首先对输入应用基础激活函数,然后通过基础卷积层进行线性变换。接着,扩展输入的维度以便进行样条操作,计算样条基函数,并通过样条卷积层进行变换。最后,应用归一化和激活函数,并在需要时应用 dropout。

forward 方法则负责将输入张量按组进行分割,并对每个组调用 forward_kan 方法,最后将所有组的输出拼接在一起。

在文件的后面部分,定义了三个子类 KANConv3DLayer、KANConv2DLayer 和 KANConv1DLayer,分别对应三维、二维和一维卷积层。这些子类通过调用父类的构造函数来初始化相应的卷积和归一化层,简化了代码的复用。

总体而言,这个程序文件实现了一个灵活且功能强大的卷积层,能够处理多维数据,并通过样条基函数增强卷积操作的表达能力。

10.4 repvit.py
以下是经过简化和注释的核心代码部分:

import torch
import torch.nn as nn
from timm.models.layers import SqueezeExcite

def _make_divisible(v, divisor, min_value=None):
“”"
确保所有层的通道数是8的倍数
:param v: 输入的通道数
:param divisor: 需要被整除的数
:param min_value: 最小值
:return: 调整后的通道数
“”"
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# 确保向下取整不会减少超过10%
if new_v < 0.9 * v:
new_v += divisor
return new_v

class Conv2d_BN(nn.Sequential):
“”"
包含卷积层和批归一化层的组合
“”"
def init(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, groups=1):
super().init()
# 添加卷积层
self.add_module(‘conv’, nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False))
# 添加批归一化层
self.add_module(‘bn’, nn.BatchNorm2d(out_channels))

@torch.no_grad()
def fuse_self(self):
    """
    融合卷积层和批归一化层为一个卷积层
    """
    conv, bn = self._modules.values()
    # 计算融合后的权重和偏置
    w = bn.weight / (bn.running_var + bn.eps)**0.5
    w = conv.weight * w[:, None, None, None]
    b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps)**0.5
    # 创建新的卷积层
    fused_conv = nn.Conv2d(w.size(1) * conv.groups, w.size(0), w.shape[2:], stride=conv.stride, padding=conv.padding, dilation=conv.dilation, groups=conv.groups)
    fused_conv.weight.data.copy_(w)
    fused_conv.bias.data.copy_(b)
    return fused_conv

class RepViTBlock(nn.Module):
“”"
RepViT块,包含token混合和通道混合
“”"
def init(self, inp, hidden_dim, oup, kernel_size, stride, use_se, use_hs):
super(RepViTBlock, self).init()
self.identity = stride == 1 and inp == oup # 判断是否需要添加恒等映射
assert(hidden_dim == 2 * inp) # 隐藏层维度应为输入维度的两倍

    if stride == 2:
        # 下采样的token混合
        self.token_mixer = nn.Sequential(
            Conv2d_BN(inp, inp, kernel_size, stride, (kernel_size - 1) // 2, groups=inp),
            SqueezeExcite(inp, 0.25) if use_se else nn.Identity(),
            Conv2d_BN(inp, oup, ks=1, stride=1, pad=0)
        )
        # 通道混合
        self.channel_mixer = nn.Sequential(
            Conv2d_BN(oup, 2 * oup, 1, 1, 0),
            nn.GELU() if use_hs else nn.Identity(),
            Conv2d_BN(2 * oup, oup, 1, 1, 0)
        )
    else:
        assert(self.identity)
        # 保持分辨率的token混合
        self.token_mixer = nn.Sequential(
            Conv2d_BN(inp, inp, 3, 1, 1, groups=inp),
            SqueezeExcite(inp, 0.25) if use_se else nn.Identity(),
        )
        # 通道混合
        self.channel_mixer = nn.Sequential(
            Conv2d_BN(inp, hidden_dim, 1, 1, 0),
            nn.GELU() if use_hs else nn.Identity(),
            Conv2d_BN(hidden_dim, oup, 1, 1, 0)
        )

def forward(self, x):
    return self.channel_mixer(self.token_mixer(x))

class RepViT(nn.Module):
“”"
RepViT模型
“”"
def init(self, cfgs):
super(RepViT, self).init()
self.cfgs = cfgs # 配置反向残差块
layers = []
input_channel = self.cfgs[0][2] # 输入通道数

    # 构建初始层
    patch_embed = nn.Sequential(
        Conv2d_BN(3, input_channel // 2, 3, 2, 1),
        nn.GELU(),
        Conv2d_BN(input_channel // 2, input_channel, 3, 2, 1)
    )
    layers.append(patch_embed)

    # 构建反向残差块
    for k, t, c, use_se, use_hs, s in self.cfgs:
        output_channel = _make_divisible(c, 8)
        exp_size = _make_divisible(input_channel * t, 8)
        layers.append(RepViTBlock(input_channel, exp_size, output_channel, k, s, use_se, use_hs))
        input_channel = output_channel

    self.features = nn.ModuleList(layers)

def forward(self, x):
    for f in self.features:
        x = f(x)
    return x
示例:构建RepViT模型

if name == ‘main’:
cfgs = [
[3, 2, 64, 1, 0, 1],
[3, 2, 64, 0, 0, 1],
# 其他配置…
]
model = RepViT(cfgs)
inputs = torch.randn((1, 3, 640, 640)) # 随机输入
res = model(inputs) # 前向传播
print(res.size()) # 输出结果的尺寸
代码注释说明:
_make_divisible: 确保通道数是8的倍数,以便于模型的高效计算。
Conv2d_BN: 组合卷积层和批归一化层,并提供融合功能。
RepViTBlock: 实现RepViT中的基本块,包含token混合和通道混合。
RepViT: 整个RepViT模型的实现,构建由多个RepViTBlock组成的网络结构。
主程序: 示例如何使用这些类构建模型并进行前向传播。
这个程序文件 repvit.py 实现了一个基于深度学习的视觉模型,主要是 RepViT(代表性视觉变换器)模型的构建与使用。文件中使用了 PyTorch 框架,并引入了一些必要的库,如 torch.nn 和 numpy。以下是对文件内容的详细讲解。

首先,文件定义了一些工具函数和类,用于构建和优化模型。replace_batchnorm 函数用于替换模型中的 BatchNorm 层为 Identity 层,这在模型推理时可以提高效率。_make_divisible 函数确保模型中所有层的通道数都是 8 的倍数,以满足特定的硬件要求。

接下来,定义了几个类,主要包括 Conv2d_BN、Residual、RepVGGDW、RepViTBlock 和 RepViT。Conv2d_BN 类实现了一个卷积层后接 BatchNorm 的组合,并提供了融合功能,以减少模型的计算量。Residual 类实现了残差连接,允许在训练时随机丢弃一些信息以增强模型的鲁棒性。RepVGGDW 类则是实现了一种深度可分离卷积的结构。

RepViTBlock 类是构建 RepViT 模型的基本单元,包含了 token mixer 和 channel mixer 的逻辑。token mixer 负责处理输入的特征图,而 channel mixer 则负责对通道进行处理。RepViT 类则是整个模型的主体,负责根据配置构建多个 RepViTBlock。

在模型的构造过程中,cfgs 变量定义了不同层的参数配置,包括卷积核大小、扩展比例、输出通道数、是否使用 Squeeze-and-Excitation(SE)模块、是否使用 Hard-Swish(HS)激活函数以及步幅等。通过这些配置,模型可以灵活地调整其结构以适应不同的任务。

文件中还定义了多个函数,如 repvit_m0_9、repvit_m1_0 等,这些函数用于构建不同版本的 RepViT 模型,并可选择加载预训练权重。update_weight 函数用于更新模型的权重,以确保模型的参数与预训练权重相匹配。

最后,在 main 部分,程序实例化了一个 RepViT 模型,并通过随机生成的输入数据进行前向传播,输出特征图的尺寸。这部分代码用于测试模型的构建是否正确。

整体而言,这个文件提供了一个灵活且高效的视觉模型实现,适用于各种计算机视觉任务,尤其是在需要处理高分辨率图像时。

源码文件

在这里插入图片描述

源码获取

可以直接加我下方的微信哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞翔的佩奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值