【技法】Lecture 15 :Matrix Factorization

本文深入探讨了电影推荐系统中的模型,从LinearNetwork的特征提取开始,逐步解析基本的MatrixFactorization算法,如交替最小二乘法。此外,还介绍了使用SGD进行优化的优势,并强调了如何通过调整算法以适应特定问题,以防止过拟合。总结了ExtractionModels在实际应用中的重要性和注意事项。
摘要由CSDN通过智能技术生成

Matrix Factorization
【参考】https://redstonewill.com/783/

  1. 从电影推荐系统模型出发,首先,介绍了Linear Network。它从用户ID编码后的向量中提取出有用的特征,这是典型的feature extraction。

  2. 然后,我们介绍了基本的Matrix Factorization算法,即alternating least squares,不断地在用户和电影之间交互地做linear regression进行优化。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  3. 为了简化计算,提高运算速度,也可以使用SGD来实现。事实证明,SGD更加高效和简单。同时,我们可以根据具体的问题和需求,对固有算法进行一些简单的调整,来获得更好的效果。

  4. 最后,我们对已经介绍的所有Extraction Models做个简单的总结。Extraction Models在实际应用中是个非常强大的工具,但是也要避免出现过拟合等问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值