搭建openpose

1.安装Visual Studio

安装Visual Studio一定要注意版本
最好是2015~2017版本
不然有可能会出现兼容性的问题
在安装的时候像我这样就行了
在这里插入图片描述

2.安装nvidia显卡驱动

这里要安装CUDA和cuDNN
CUDA安装10.0版本
CUDNN安装7.5版本
在这里插入图片描述

3.下载openpose的模型

将这些模型放入对应文件当中
在这里插入图片描述
并执行里面的.bat文件(如果不执行的话 他会在编译的时候去下载 等很长的时间)

4.下载cmake编译

这里要注意的地方是把模型勾上
在这里插入图片描述
这几个模型要勾上
在这里插入图片描述
还就是 如果想要去使用python的话
前提:openpose下的3rdparty补全
在这里插入图片描述
这些pybind11就是具体作用就是让openpose可以给python调用
补全后在cmake中
在这里插入图片描述
这样python就可以调用了

这部操作是由于在GitHub上可以看到openpose 里面的3rdpaty 里面是东西的
但是下载下来后没有了 因此要去补全 里面的放大插件主要功能就是可以让python调用。

5. 完结

上述所有所需的材料
提取码:k11c
本人QQ:1322677050

好的,您想了解人体行为识别(骨架提取)的相关内容,以及如何搭建openpose环境,使用VS2019(python3.7)+openpose进行开发。以下是一些相关的信息和步骤: 1. 什么是人体行为识别(骨架提取)? 人体行为识别(骨架提取)是指通过计算机视觉技术,从人体图像或视频中提取出人体的骨架信息,进而分析人体的运动状态和行为特征。这项技术在很多领域都有应用,比如人体运动分析、医学诊断、安防监控等。 2. openpose是什么? openpose是一个基于深度学习的开源人体姿态估计库,可以实现人体骨架提取、关键点检测、姿态估计等功能。它使用了卷积神经网络(CNN)和递归神经网络(RNN)等深度学习模型,能够快速准确地识别人体姿态。 3. 如何搭建openpose环境? 为了使用openpose,您需要先搭建好相应的开发环境。以下是使用VS2019(python3.7)+openpose搭建步骤: (1)安装Anaconda,建议选择Python3.7版本,下载地址:https://www.anaconda.com/products/distribution (2)安装Visual Studio 2019,下载地址:https://visualstudio.microsoft.com/downloads/ (3)安装CMake,下载地址:https://cmake.org/download/ (4)下载openpose源代码,下载地址:https://github.com/CMU-Perceptual-Computing-Lab/openpose (5)使用CMake生成项目文件,选择工程生成目录和安装目录,点击Configure,然后Generate (6)打开Visual Studio 2019,选择Openpose.sln,编译生成 (7)在Anaconda中创建虚拟环境并安装相关依赖库,比如numpy、opencv等 (8)将生成的dll文件复制到Anaconda虚拟环境下的Lib/site-packages目录中,将生成的pyd文件复制到Anaconda虚拟环境下的Lib/site-packages/openpose目录中 4. 如何使用openpose进行人体骨架提取? 使用openpose进行人体骨架提取的方法比较简单,只需要调用相应的API即可。以下是一个简单的例子: ```python import cv2 from openpose import pyopenpose as op params = dict() params["model_folder"] = "path/to/openpose/models" params["net_resolution"] = "320x240" # 初始化OpenPose opWrapper = op.WrapperPython() opWrapper.configure(params) opWrapper.start() # 加载图像 img = cv2.imread("path/to/image.jpg") # 进行骨架提取 datum = op.Datum() datum.cvInputData = img opWrapper.emplaceAndPop([datum]) # 获取提取结果 keypoints = datum.poseKeypoints ``` 以上就是使用openpose进行人体骨架提取的基本步骤。您可以根据实际需求对代码进行调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值